D. M. Boore, Finite Difference Methods for Seismic Wave Propagation in Heterogeneous Materials, Methods in Computational Physics, pp.1-37, 1972.
DOI : 10.1016/B978-0-12-460811-5.50006-4

R. Madariaga, Dynamics of an expanding circular fault, Bull. Seism. Soc, vol.66, pp.639-666, 1976.

K. B. Olsen, R. J. Archuleta, and J. Matarese, Three-Dimensional Simulation of a Magnitude 7.75 Earthquake on the San Andreas Fault, Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault, pp.1628-1632, 1995.
DOI : 10.1126/science.270.5242.1628

T. Furumura and L. Chen, Large scale parallel simulation and visualization of 3D seismic wavefield using the Earth Simulator, Comp. Model. Eng. Sci, vol.6, pp.153-168, 2004.

J. Virieux and R. Madariaga, Dynamic faulting studied by a finite difference method, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol.20, issue.1, pp.345-369, 1982.
DOI : 10.1016/0148-9062(83)91702-3

E. H. Saenger, N. Gold, and S. A. Shapiro, Modeling the propagation of elastic waves using a modified finite-difference grid, Wave Motion, vol.31, issue.1, pp.77-92, 2000.
DOI : 10.1016/S0165-2125(99)00023-2

R. Clayton and B. Engquist, Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am, vol.67, pp.1529-1540, 1977.

F. Collino and C. Tsogka, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, GEOPHYSICS, vol.66, issue.1, pp.294-307, 2001.
DOI : 10.1190/1.1444908

D. Komatitsch and R. Martin, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, GEOPHYSICS, vol.72, issue.5, pp.155-167, 2007.
DOI : 10.1190/1.2757586

URL : https://hal.archives-ouvertes.fr/inria-00528418

. Graves, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seism. Soc. Am, vol.86, pp.1091-1106, 1996.

P. Mozco, J. Kristek, M. Galis, P. Pazak, and M. Balazovjech, The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion, Acta Physica Slovaca, vol.57, pp.177-406, 2007.

S. M. Day and C. Bradley, Memory-Efficient Simulation of Anelastic Wave Propagation, Bulletin of the Seismological Society of America, vol.91, issue.3, pp.520-531, 2001.
DOI : 10.1785/0120000103

J. Kristek and P. Moczo, Seismic-Wave Propagation in Viscoelastic Media with Material Discontinuities: A 3D Fourth-Order Staggered-Grid Finite-Difference Modeling, Bulletin of the Seismological Society of America, vol.93, issue.5, pp.2273-2280, 2003.
DOI : 10.1785/0120030023

S. Aoi and H. Fujiwara, 3-D finite-difference method using discontinuous grids, Bull. Seism. Soc. Am, vol.89, pp.918-930, 1999.

A. Ducellier and H. Aochi, Interactions between topographic irregularities and seismic ground motion investigated using a hybrid FD-FE method, Bulletin of Earthquake Engineering, vol.148, issue.3, pp.773-792, 2012.
DOI : 10.1007/s10518-011-9335-6

URL : https://hal.archives-ouvertes.fr/hal-00653341

F. Dupros, H. Aochi, A. Ducellier, D. Komatitsch, and J. Roman, Exploiting intensive multithreading for efficient simulaton of seismic wave propagation, 11th Int, Conf. Computational Science and Engineering, pp.253-26010, 2008.

D. Michéa and D. Komatitsch, Accelerating a 3D finite-difference wave propagation code using GPU graphics cards, Geophys. J. Int, vol.182, pp.389-402, 2010.

V. M. Cruz-atienza, J. Virieux, and H. Aochi, 3D finite-difference dynamic-rupture modeling along nonplanar faults, 3D finite-difference dynamic-rupture modeling along nonplanar faults, pp.123-137, 2007.
DOI : 10.1190/1.2766756

URL : https://hal.archives-ouvertes.fr/insu-00355272

L. A. Dalguer and S. M. Day, Staggered-grid split-node method for spontaneous rupture simulation, Journal of Geophysical Research, vol.88, issue.47, pp.10-1029, 2007.
DOI : 10.1029/2006JB004467

H. Aochi and R. Madariaga, The 1999 Izmit, Turkey, Earthquake: Nonplanar Fault Structure, Dynamic Rupture Process, and Strong Ground Motion, Bulletin of the Seismological Society of America, vol.93, issue.3, pp.1249-1266, 2003.
DOI : 10.1785/0120020167

E. Fukuyama, R. Ando, C. Hashimoto, S. Aoi, and M. Matsu-'ura, A Physics-Based Simulation of the 2003 Tokachi-oki, Japan, Earthquake to Predict Strong Ground Motions, Bulletin of the Seismological Society of America, vol.99, issue.6, pp.3150-3171, 2009.
DOI : 10.1785/0120080040

H. Aochi, E. Fukuyama, and R. Madariaga, Constraints of fault constitutive parameters inferred from non-planar fault modeling, pp.10-1029, 2003.

K. Asano and T. Iwata, Kinematic source rupture process of the 2008 Iwate-Miyagi Nairiku earthquake, a Mw6.9 thrust earthquake in northeast Japan, using Strong Motion Data, Fall Meeting, p.89, 2008.

W. Suzuki, S. Aoi, and H. Sekiguchi, Rupture Process of the 2008 Iwate-Miyagi Nairiku, Japan, Earthquake Derived from Near-Source Strong-Motion Records, Bulletin of the Seismological Society of America, vol.100, issue.1, pp.256-266, 2010.
DOI : 10.1785/0120090043

Y. Takada, T. Kobayashi, M. Furuya, M. Murakami, A. Palsar et al., Post-seismic surface deformation following the, Iwate-Miyagi Nairiku earthquake, pp.181-193, 2008.

H. Aochi, V. Durand, and J. Douglas, Influence of Super-Shear Earthquake Rupture Models on Simulated Near-Source Ground Motion from the 1999 Izmit, Turkey, Earthquake, Bulletin of the Seismological Society of America, vol.101, issue.2, pp.726-741, 2011.
DOI : 10.1785/0120100170

URL : https://hal.archives-ouvertes.fr/insu-00679243

H. Aochi, A. Ducellier, F. Dupros, M. Delatre, T. Ulrich et al., Finite difference simulations of the seismic wave propagation for the 2007 Mw6.6 Niigataken Chuetsu-oki earthquake : Validity of models and reliable input ground motion in the near field, Pure appl, Geophys, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00980238

D. Komatitsch and J. P. Vilotte, The spectral-element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seism. Soc. Am, vol.88, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

E. Chaljub, D. Komatitsch, J. Vilotte, Y. Capdeville, B. Valette et al., Spectral element analysis in seismology Advances in wave propagation in heterogeneous media Advances in Geophysics, pp.365-419, 2007.

M. Dumbser and M. Käser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II. The three-dimensional isotropic case, Geophysical Journal International, vol.167, issue.1, pp.319-336, 2006.
DOI : 10.1111/j.1365-246X.2006.03120.x

V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky, An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, Geophysical Journal International, vol.183, issue.2, pp.941-962, 2010.
DOI : 10.1111/j.1365-246X.2010.04764.x

URL : https://hal.archives-ouvertes.fr/insu-00565022

D. Martin and F. , Verification of a Spectral-Element Method Code for the Southern California Earthquake Center LOH.3 Viscoelastic Case, Bulletin of the Seismological Society of America, vol.101, issue.6, pp.2855-2865
DOI : 10.1785/0120100305

URL : https://hal.archives-ouvertes.fr/hal-00660332

J. Douglas and H. Aochi, A Survey of Techniques for Predicting Earthquake Ground Motions for Engineering Purposes, Surveys in Geophysics, vol.21, issue.8, pp.187-220, 2008.
DOI : 10.1007/s10712-008-9046-y

URL : https://hal.archives-ouvertes.fr/hal-00557625

S. M. Day, J. Bielak, D. Dreger, R. Graves, S. Larsen et al., Tests of 3D elastodynamic odes: final report for lifelines project 1A01, 2001.

E. Chaljub, P. Moczo, S. Tsuno, P. Bard, J. Kristek et al., Quantitative comparison of four numerical predicsions of 3D ground motion in the Grenoble Valley, pp.1428-1455, 2010.

J. E. Kozdon, E. M. Dunham, and J. Nordstrom, Simulation of Dynamic Earthquake Ruptures in Complex Geometries Using High-Order Finite Difference Methods, Journal of Scientific Computing, vol.22, issue.1, pp.10-1007, 2012.
DOI : 10.1007/s10915-012-9624-5

W. Zhang, Z. Zhang-an, and X. Chen, Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids, Geophysical Journal International, vol.190, issue.1, pp.358-378, 2012.
DOI : 10.1111/j.1365-246X.2012.05472.x