Mechanistic and kinetic study of pyrite (FeS2)-hydrogen (H2) interaction at 25°C using electrochemical techniques
Stéphanie Betelu, Catherine Lerouge, Gilles Berger, Eric Giffaut, Ioannis Ignatiadis

To cite this version:
Stéphanie Betelu, Catherine Lerouge, Gilles Berger, Eric Giffaut, Ioannis Ignatiadis. Mechanistic and kinetic study of pyrite (FeS2)-hydrogen (H2) interaction at 25°C using electrochemical techniques. International meeting "Clays in Natural and Engineered Barriers for Radioactive Waste Confinement", Oct 2012, Montpellier, France. <hal-00703578>

HAL Id: hal-00703578
https://hal-brgm.archives-ouvertes.fr/hal-00703578
Submitted on 3 Jun 2012
Mechanistic and kinetic study of pyrite (FeS₂)-hydrogen (H₂) interaction at 25°C using electrochemical techniques

S. Betelu¹, C. Lerouge¹, G. Berger², E. Giffaut³ and I. Ignatiadis¹*

¹BRGM, Environment and Processes Division, 3 Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex, France (*corresponding author: i.ignatiadis@brgm.fr)
²IRAP, Observatoire Midi-Pyrénées 14 av. E. Belin, 31400 Toulouse, France
³ANDRA, Scientific Division, Environmental Survey and Disposal Monitoring Department (DS/OS), 1-7, rue Jean-Monnet, 92298 Châtenay-Malabry, France

After the closure of the underground nuclear waste repository, aqueous corrosion of the steel canister and, to a lesser extent, radiolysis of water would produce significant amounts of H₂. This H₂ can interact with materials from the repository and with the surrounding clay host formation. The COx formation contains pyrite (FeS₂), which has been demonstrated to react with Hydrogen gas (H₂) (Truche et al. 2010) at temperature ranging from 90°C to 180°C.

This work aims at understanding these interactions at 25°C. With regards to E-pH equilibrium diagrams at 25°C for the two systems S-H₂O and Fe-S-H₂O with a total dissolved S concentration of 0.1 mole S per liter (about pH₂S=1bar), FeS₂ must be an oxidant for H₂ at pH higher than 9, and FeS₂ should transform into Pyrrhotite (FeS₁₋ₓ), according to: FeS₂ + (1-x) H₂ = FeS₁₋ₓ + (1-x) H₂S (with 0<x<0.125) and at pH higher than 12.5 FeS₂ should transform into Mackinawite. Investigations were thus conducted at pH higher than 9, in agreement with the alkaline perturbation in the clay-rock pore-water.

After pyrite electrodes had been assembled (figure 1A), various electrochemical disturbances were applied to this material (and to platinum for comparison) while it was submerged in a partially reconstituted solution of COx pore water (pH 9.5), enclosed in a Low Pressure Thermo-Reactor (LPTR, figure 1B), in the absence and in the presence of pyrite grains (particle size between 40 and 63 µm) and H₂ (PH₂ = 0 or 1 bar) (Ignatiadis et al., 2012). The H₂ present in the LPTR was produced in situ by water electrolysis by using an external generator and two platinated titane electrodes (anode & cathode) (figure 1B). In addition to the electrochemical behaviour of the platinum and the pyrite, the pH, temperature and pressure of the liquid medium were monitored.

![Figure 1: A) Pyrite electrodes B) The Low Pressure Thermo-Reactor and control unit.](image)

Pyrite linear sweep polarization (LSP) (figure 2) clearly shows the metastable behaviour of its surfacic S°. When pyrite is at the corrosion potential (EₚPy) surfacic S° simultaneously oxidizes to thiosulfates and reduces to sulphide. Potentiometric measurements demonstrated that both Eₚ and EₚPy decrease in the presence of H₂ to reach a stable redox potential.
Experiments are in progress in order to determine the kinetics of FeS\textsubscript{2} dissolution by H\textsubscript{2} at 25°C. The prospects for this work are, therefore, the exploitation of these data and their extrapolation to storage conditions.

Acknowledgement

Research has received funding from i) the European Union's European Atomic Energy Community's FP7/2007-2011 under grant agreement no 212287 (RECO SY project) and ii) the ANDRA under the BRGM-ANDRA partnership (TRANSFERT project).

References

