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Abstract

Assessing the collapse susceptibility of aband@aedties at a regional scale is associated with
large uncertainties that are mainly related toviééry nature of the phenomena, but also to the
difficulty in collecting exhaustive information atich a scale on often “forgotten” structures. ia th
context, the expert's role is essential, becaude &ble to synthesize the information resultiranfr
the inventory and from the commonly imprecise,af mague, criteria on the basis of his experience
and his knowledge of the regional geological arstidnical and economic context.

In this article, we propose mathematical toolsrépresenting and processing this information in
order to give flexibility to this step and manabe tincertainty inherent in the expert’s information
The first tool, based on the weight of evidencetiigs for managing the uncertainty due to the
heterogeneous spatial distribution of the data,redsethe second tool, based on the fuzzy set
theory, is for managing the imprecision and incaetgriess of available data, which hinder the
definition of the class boundaries of the quantieatiecision criteria. Based on an appropriate
representation of the uncertainty sources (relatéde input data and to the expert diagnostic), we
then propose a methodology that integrates thertamcty in the final output of the collapse
susceptibility assessment and provides a confidenteator useful within the decision-making
process. The proposed methodology is applied téttses territory in the North of France, where
abandoned chalk pits (dating back to the Roman) ageswar saps (i.e. covered trenches) located
in the vicinity of the First World War front lindsoth raise difficulties for urban planning

Keywords. Cavities; Susceptibility assessment; Regionaks&atpert judgement; Weight of
Evidence; Fuzzy set.

1. Introduction

The Earth’s subsurface has, throughout historyp lieensively worked not only for extracting
material, as testified by the vast number of qearand marl pits, but also for various other reason
resulting in underground structures as varied assaps (covered frontline trenches), underground
shelters, troglodyte dwellings, etc. (LCPC, 2002)addition to these anthropogenic structures are
the « natural » cavities such as the karsts indiore environments. The existence of most of these
underground cavities, classified as « abandonedunknown whereas voids can extend several
tens of metres.

It is estimated that France contains more than(®@0of such underground structures whose partial
or total ruin can have considerable socio-econaoisequences for the community (Van Den
Eeckhaut et al., 2007; Gutiérrez et al., 2008).dx@mmple, in the French region of Picardy alone,
more than 300 constructions were damaged througtyallapse following the winter rains of
2000-2001 (Bouchut and Vincent, 2002). These evaaride sufficiently violent to cause human
loss. Thus, in 1961, the collapse of an undergrainatk quarry in the Paris suburb of Clamart
caused the destruction of 20 buildings with thethled21 people (Josien, 1995).

In France, cartographic tools known as Risk PregarRlans (RPP), have been developed at
municipal scale for determining cavity-associatiells (MATE, 1999). However, faced with both

the number and the diversity of such abandonedieaythe authorities require decision-aid tools to
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be able to rank the risks at spatially larger scédech as grouped-municipality, if not regional
scale) and manage the resultant uncertainties If@ralet al., 2005). The present study puts forward
a methodology in answer to these expectations.

Contrary to other natural phenomena, no singlegandariable can be identified for the overall
measurement of the dreaded event, i.e. cavitymsdlain most cases, the studied underground
structures are not accessible, which eliminatesisieeof a systematic deterministic approach. The
particularity of mining cavities is the precisioftem provided by the existence and knowledge of
mine plans and geometric parameters, even whemiplete. In the general case, we are concerned
with limited and non-exhaustive input data, seldupported by geometric and mechanical
parameters. Being given the specificity of the dadhatural phenomenon, the only predictive
models that can be established consist in expiggdismspatial probability of a surface instabiftie
appearance, known as “susceptibility”. Two appreaotan be commonly proposed in the view to
assess the level of susceptibility: the one beagetd on empirical methods and the second one on
the quantification of this levelby means of math@oah and statistical tools. In both cases, we have
to be deal with with multiple and locally highlynable, controlling factors mainly based mainly on
the judgement and information of an expert panel.

Where purely empirical methods are concerned, amé&, methodological guides has been
produced for assessing underground-cavity susdkggtin general (LCPC, 2002) or dedicated, for
example, for the marl-pits of Upper Normandy (LCRG0Q8) or for mining cavities (INERIS,

2004). These guides develop a phenomenologicabapprbased on analysing the rupture
mechanisms and generally resulting in a qualitatpegtial ranking of the susceptibility based on a
weighting adjusted by experts. The application staring and classification procedure has been
commonly applied for ranking the collapse suscdptilof karstic cavities (Forth et al. 1999;
Kaufmann and Quinif, 2002; Zhou et al., 2003; Cappe08; Guerrero et al. (2008)). One major
limitation of such an approach is the choice ofilegghtings, which is highly dependent on expert
judgements (i.e. subjectivity), hence widely vagyfrom one expert to another.

To compensate for this shortcoming, a large vaoétygorous mathematical and statistical tools
have been introduced enabling one to quantify tbbability between empirically established
relationships without introducing expert subjedyivirhus, White (1988) used the nearest neighbour
analysis to interpret the spatial distribution imk&oles, Mancini et al. (2009) used a multicrieri
decision analysis to combine several quantitatazahd factors controlling the subsidence of a salt
mine in order to score the hazard. Gao and Alexafaf®3) and Bruno et al. (2008) used a
decision tree, Lamelas et al. (2008) chose logisticession. Applying several karst susceptibility
assessment methodologies to the Ebro Valley, Galaé (2009) noted that models derived from
the nearest neighbour distance and sinkhole density more reliable than the probabilistic or
heuristic methods. These tool types, however, akglmased on the initial collection of data and
thus favour the best informed sectors so thatiseeptibility assessment might result in outlining
the sectors where the information on the cavisesvailable. Thus, a major limitation of these
approaches is that they are unsuited to an invetteat is known to be scarce and incomplete. The
quality and precision of these approaches restdhdn the exhaustiveness of the inventory, the
realization of which is limited notably by the siakthe study area. Introduction of the expert’s
subjectivity because of his knowledge of the regiaontext is thus essential in order to fill the
gaps of the data-gathering phase.

Overlapping these methodological approaches attieiniew to overcome the usual limitations
encountered within commonly-used collapse susdéptiassessments of underground structures,
an alternative is proposed in this article fulfitii the following requirements: (1) providing a ugef
tool for decision-makers and regional planning ngens; (2) being flexible and adaptable to all
kinds of cavity and specific local conditions; €)abling to take into account expert judgements of
all types (geological, geographical, historicalgieeering, etc.) whilst introducing analytical teol
that control the weight of expert’s subjectivity}) enabling to use existing punctual data collectio
while, at the same time, overcome any deficiend/@rlack of this collection.

The present article is organized as follows. livst §ection, the general principles adopted for
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collapse susceptibility assessment of abandoneergralind structures is described. In a second
section, we shall see the adopted mathematica tileloped to manage the multiple uncertainty
sources associated with the assessment. We ssake that these tools depend on the nature of
the criteria used. They are adapted either fronfviteeght-of-evidence” approach, which has been
widely used in the field of mineral exploration (Bwm-Carter, 1994) and further applied for
geohazard assessment, or from the “fuzzy set” jh@adeh, 1965) to deal with imprecision and
incompleteness of available data. Based on an pppte representation of the uncertainty sources,
we then propose a methodology that integrate tkerntainty in the final output of the collapse
susceptibility assessment and synthesize a cormfediedicator useful within the decision-making
process to assess the sensitivity of the resuttsetinputs. Finally, the use of the proposed
methodology is illustrated for the Arras regionNmirthern France (section 4).

2. Methodology for assessing collapse susceptibility
2.1. Definition of susceptibility

The susceptibility of a surface disturbance (ireugd instability) measures the spatial probability
of its appearance at the surface, without any eefe to a temporal frequency associated with the
hazard (Galve et al., 2009). This susceptibiliyelas a decision indicator for the decision maker,
and is here assessed quantitatively as an “index”.

From a practical point of view, the Collapse Susibdfty (CS), i.e. the susceptibility of a collagps
appearing at the surface, is commonly estimatetdeasrossing of two separate susceptibility
values, i.e. the Presence Susceptibility (PS) badRuupture Susceptibility (RS), because regarding
the large spatial scale considered, each of theseeptibility values can be assessed from
independent controlling factors (see discussiageittion 4). The first term PS corresponds to the
susceptibility of cavities being present, wherdwsdecond term RS corresponds to the
susceptibility of the overlying ground (overburdeapturing provided that a cavity is actually
present. Thus, the latter susceptibility of thetwug process of the overburden is assessed in a
“worst-case” situation because the presence ofigdycae. the presence of void, is an additional
factor increasing the ground rupture tendency.

From a mathematical point of view, the operationsisting in merely multiplying both
susceptibilities to obtain the final collapse sysit®lity implies that the two considered events ar
independent. This can be justified by the applacaof the Bayes theorem (see eq. (1)) considering
that the presence of a cavity given the occurref@ecollapse event can be considered “certain”
(i.e. the susceptibility is one).

As an illustration, let us consider a voluminousitygbelow a massive resistant granitic overburden
will present no surface risk. Conversely, a thactured and weathered limestone cover will not
contain the propagation of instability, providedita cavity can exist at the same place. Notice tha
although we focused here on brittle deformatioas #ne the more damaging for the surface, such
an approach could also be applied to plastic dedtioms that control ground instabilities such as
settlement or subsidence.

2.2. Principles of the methodology

The study area is divided into homogeneous seftioesach of which one calculates a susceptibility

index. The desired susceptibility index (here, thfahe collapse susceptibility, CS) derives from

two susceptibility values (here PS and RS) assesgedtallel as outlined in Fig. 1. The calculation

of each value is a three-step process involving:

- Step 1: an inventory of existing data and a calbecof information (geological and historico-
economic) on the local context. This step is desckin section 2.2.1.;

- Step 2: a list of relevant controlling factors (iceteria) identified by experts from Step 1, the
expertise being the central aspect of the methbis. Step is described in section 2.2.2 and the
key role of expertise is further discussed in sec.3.;
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- Step 3: a specific susceptibility map for each idexa criterion starting from a quantitative

index (for which the calculation method is desdaliibe section 3 and illustrated in section 4.3.).
Such an approach is easily integrated into a GEb¢&phic Information System) and the final
collapse susceptibility map is then calculated tmgsing the presence and rupture susceptibility
maps, each of them resulting from independent kt@pand 3.

[Fig. 1 about here]

It should be noted that a specific susceptibiliggpnms assessed for each cavity type. The
characteristics of the disturbance expected asuhiace and the controlling factors are notably
highly dependent on the characteristics of thetemsv{geological nature, dimension, location,
depth, etc.), which vary greatly according to thgire. To assess an overall susceptibility,
regardless of cavity type, would be senseless.

2.2.1. Step 1: Data collection
The data collection step aims at gathering the ioéarmation in general (geological, historico-
economic...) and especially, the inventoried punctiagh. More precisely, it requires two distinct
inventories for each type of cavity: an inventofyhee existing cavities and an inventory of the
associated surface disturbances. The two investdoenot necessarily have to be balanced in terms
of number. In some French Departments, such as BaGironde (southern France), quarry plans
enable the compilation of very exhaustive cavityemtories, whereas in other regions, such as
Picardy, Normandy (northern France), etc., onesfiadirge amount of surface disturbances but
little information on the marl pits.
The inventories must be sufficiently supplied sdoalse, according to the expert’s opinion,
representative of the state of both cavities adidgses, in the studied area. It should be noted,
however, that an inventory considered as non-reptatve of the considered situation should be
completed with data of similar neighbouring areas thus increase the representativeness of the
highlighted spatial correlations.
Surface disturbances related to the presence mh@erground cavity can be of varied types such as
generalized-collapse, sinkhole, subsidence, settienetc. While deciding focusing on “collapse”
phenomenon, the inventory should gather, so faoasible, the ground instabilities connected to
such brittle deformation (i.e. collapse, sinkhole.In)this article, these specific types of ground
instabilities are assigned to the generic termttaimnces”.

2.2.2. Step 2: Controlling factor (i.e. criterion) idemtgtion

Two kinds of controlling criteria have to be iddd for each cavity type : those that justify the
spatial distribution of the cavities within the dyuarea (e.g. geological nature, depth of the
workable formations, etc.) and those that justify tollapses distribution (e.g. thickness of the
cover rock, variation in groundwater level, nataféhe overburden, etc.). Actually, it is considkre
that future disturbances will occur under similanditions to past disturbances. These controlling
factors can be classified into two types: « quiliea» when concerning qualitative indications
(lithological type, historical sectoring, etc.) andjuantitative » when they can be associated avith
measurable order (depth, distance, resistancg, k&hould be noted that the process of identdyi
the appropriate criteria is beyond the scope optlesent article, which focuses on managing the
expert information and the associated uncertaintedhe controlling factors have been defined.

2.3. Key role of the expertise
Integrating the uncertainties helps improving tis& management (Merad et al., 2004). In
situations where a great deal of data are avajlahleh as when dealing with industrial risk
assessment or car accidents, a commonly used nodbdlggdor representing uncertainty is based on
probabilistic tools (e.g. Baudrit and Dubois, 2006)many cases and for many risk sources,

4



however, particularly in the field of georisks (ekgrimi and Hullermeier, 2007, Cauvin et al.,
2008 & 2009), the data available for hazard assessoan be particularly scarce and is often
associated with imprecision and incompletenessagepatial and financial constraints. Such
uncertainties are usually named “epistemic”, beedhgy are knowledge-based in contrast to
aleatoric uncertainties, which are inherent todtesidered physical process (Ellingwood and
Kinali, 2009). In these cases, it is difficult teaucommon mathematical tools for the uncertainty
representation (Helton and Oberkampf, 2004; Bawaahit Dubois, 2006).
It is in this context that the expert’s role ise#sal. At the core of the method (Fig. 1), theexxp
on the basis of his experience and his regionaMeunige, synthesizes and interprets the commonly
imprecise, if not vague, information obtained frima inventory and the geological and historical-
economic contexts. As several authors have alrpathted out relative to all types of underground
structure (Upchurch and Littlefield, 1988; Bensomale 2003; Hubbard, 2003; Brinkmann et al.,
2008), the essential aspect of the expertise igldrdification of the theoretical controlling facs
regulating the occurrence of the disturbancestheeequivalent of the step 2 of the methodology.
We propose introducing analytical tools that enleathe expertise process while managing several
forms of epistemic uncertainty. It is a questionndégrating two of the four types of uncertainty
that, according to Cauvin et al. (2008), mar tls& analysis procedures: the “expert uncertainty”
and the “input data uncertainty”. More preciselg propose to address the following types of
uncertainties :
- UNC 1: non-exhaustiveness and heterogeneity isphg&al distribution of the inventory
data (“data uncertainty”);
- UNC 2: imprecision of the cavity and collapse inweied data (poor location, information
lacking, etc.) (“data uncertainty”);
Both of these “data uncertainties” are making wpitfitial knowledge of the studied geological
phenomenon, which complicated the analysis. Wetalk into account two other sources of
uncertainty, linked to the analysis the expertd fieam the analysis of this inventoried data:
- UNC 3: uncertainty associated to the expert analysd interpretation (“expert diagnostic
uncertainty”);
- UNC 4: imprecision or variability of the cartograpldata related to each criterion on the
basis of which the index is fixed (“cartographi¢alancertainty”).
It is important to note that we do not questionlthsic hypothesis on which the method is based,
namely that there is a correlatlon between theawml event and the identified criterich—Fhese

3. Managing expert uncertainty (Step 3)

In this section, we propose mathematical toolsdpresenting and processing with flexibility the
expert information while managing the differentdsnof associated uncertainty.

3.1. Addressing UNC 1: use of a density function

A specific tool has been developed to quantifylével of susceptibility associated with qualitative
controlling factors, e.g. geological nature of substratum, historical area, etc.

In a classical approach, the relationship betwherspatial distribution of the cavities (or of the
surface ground disturbances related to a cavitg)iaiormation of qualitative nature-{e-g-—the
geological-nature-of-the-substratum) would be asskby assigning a weight-te-each-geslogical
formation, reflecting the expert knowledge-en-efiehration (historical presence of quarries,
gualitative estimates of rock strength, etc.). Wagor limitation of such an approach resides in the
guantification of these weights and as an alteveatve propose a data-driven method based on the
“weight of evidence” approach.
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This approach was originally developed for minesgdloration activities (for instance in the field

of gold mineralization research, Bonham-Carter, 4 @hd recently used in the field of landslide
hazard assessment to quantify landslide triggesusgeptibility (Rezaei Moghaddam et al., 2007,
Neuhauser and Terhorst, 2007; Barbieri and Cam®dli9) and begins to be used for assessment of
ground subsidence susceptibility related to abaedonines (Oh and Lee, 2010).

The attractive feature of this method is its flélpwhen, for example, geotechnical or
hydrogeological data are unavailable at the rediscale (Rezaei Moghaddam et al., 2007;
Neuhauser and Terhorst, 2007).

Formally, the “weight of evidence” approach is lzhea the statistical Bayesian paradigm using the
concept of prior and posterior probability. Foudtrative purposes, let us consider the qualitative
factor “geological nature of the formation” usuallyed to explain the presenee-suseeptibility
assessment ef-abandened cavities. We define thm Exaes the one referring to this geological
factor ; the associated probability is denotdfl) pSimilarly, the even refers to the presence of
cavity which probability of occurrence is denot®)

The probability P(G| E) of the a posteriori outcome Gf givenE reads after the Bayes theorem as
follows:

p(E|G).p(G)

P(GIE) = o(E)

(1)

Defining the “odd” as6(G) = p(G)/ p(G) , the weight of evidence W can be expressed asasl|

_ PES),
log(68(G|E)) = log(é(G)) + log( o(E ) =log(@(G)) +W (2)

(E[G)

The weightW is directly proportional to the influence that #dentrolling factorE has on the
presence of the underground cavityhence measuring the modification brought by tiieame of
the event on the probability @) of an a priori outcome of the eveat

In the landslide case, Barbieri and Cambuli (2C88)es$V considering the area affected by
landslide phenomena in the considered class ffi e considered geological formation), the total
area affected by landslide, the total area of tresiclered class and the total area of the studied
zone. We adapt this approach for cavities: sineatiea covered by these structures (or the area of
the ground disturbances generated by such strggtcaa be neglected compared to the large area
of the studied zone (regional spatial scale), tentjty of interest describing the underground
structure is simply the number of inventoried dasgit

Let us divide the spad® into spatial unitsy; following the outcome of one qualitative criterifn

the considered case, the geological nature ofuthstsatum), as depicted in Fig. 2A. Definiag

as the area of the considered class @pds the number of cavities in this clagsandNg

correspond to the total area and the total numbeanaties of the whole studied spaQeThe
weight of evidencan,, associated to the spatial usijtreads as follows:

W, ~ log(L /NQ):Iog(DM)
ay 1 Ag 3)

an :NQ&Z“aCq = A,

Noteworthy, such an approach can be easily adaptie evenkE “overburden rupture” from the
outcome of even®, presence of surface disturbances.
In practice, each identified qualitative criterip®. controlling factor) leads to a space pamitand
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a definition of a density functiod , which is thus “stepped”, constant and equabfgn each
spatial unit.

We shall illustrate our case by focussing on thené : "presence of quarries in the Loiret
Department of France”. In this case, the spatiabwassociated to the criterion “lithological nagur

of the substratum” (occurrence fack); are shown on Fig. 2B. Each geological unit soagated

with a single index tied in to the observed datal(aot only on an expert judgement) using the
density function allowing to manage the heteroggradithe data spatial distribution within the
units by extending the localized inventoried infatran. Thus, the commune of Ingrannes, without
any known cavity, will be assigned, considering ttriterion, the same index as the city of Orléans
located in the same spatial unit correspondin@péogeological formation of “Pithiviers”

Limestone, and for which a detailed inventory iaible (Fig. 2B).

Though this approach allows to define rigorouslg abjectively quantitative index assigned to
gualitative spatially-distributed controlling facto the key aspect resides in ensuring that the
inventory of the collected data (number of undemgubstructures, number of ground disturbances)
is representative as outlined in Billa et al. (2004

[Fig. 2 about here]
3.2.  Addressing UNC 2: use of a membership function

A specific tool has been developed to quantifylével of susceptibility associated with
guantitative controlling factors, e.g. thicknessha overburden, depth of the water table, etc.
The fuzzy logic (e.g. Ross, 1995) based on theyfset theory (first introduced by Zadeh, 1965) is
particularly suited for formalizing empirical anatuitive reasoning which the experts may establish
from a few vague data. In particular, it enables ttnmanage the so-called “threshold effects”
generally introduced at the class limit level. Tdésatures make the methodology, which was
brought to rock mechanics by Brown (1979), paradylwell suited for geotechnical problems
(e.g. Elshayeb 2005). Recently, Saboya et al. (@06 Kanungo et al. (2006) both used fuzzy
logic for assessing landslide susceptibility.

Let us consider the concept of membership functidnch defines how each elemedf the input
spaceX (also named “universe of discourse”) is mappea degree of membership (denotgd
Under the classical theory of Boolean logic, thembership function of a sétis simply defined as
a binary function that takes the valug)=1 if the element belongs foand the valug(x)=0,
otherwise. In Fig. 3A, the sétis graphically represented by a clearly definedratary. However,
faced with information tainted by uncertainty, iaynbe difficult (or impossible) to accurately
define the location of this boundary. In this comtéhe fuzzy set theory introduces the concept of
set without a crisp, hence clearly defined, boupdamch a seA can contain elements with only a
partial degree of membership (scaled between A aad defined by equation 5.

pz X - [od]
;\={x,,u/3(x)/xD;\;;\D X} ®)

Graphically, the boundary of the fuzzy #eis a progressive boundary (Fig. 3B), so that tament
X2 depicted in Fig.3B is located in the "fuzzy" zdyeween the so-called “certain” boundaries
(boundaries respectively assigned to u=0 and pad )saassociated with a 66 % degree of
membership, whereas under the classic Booleanythea entirely excluded from unit A (Fig.
3A).

[Fig. 3 about here]



Considering cavities, the fuzzy set theory is useguantify the influence of each quantitative
criterion for both dreaded geological events “pnegeof an underground cavity” and “overburden
rupture”.

Let us consider the criterion “depth of the worlgeslogical formation”, frequently used to justify
the presence of a quarry. In this case, the inpates(i.e. universe of discourse) is all potential
depths of the worked geological formation. On thei of the collected data (Fig. 4.A.), as well as
of regional knowledge of the context (both geolagand historical), the expert could, for instance,
state that "in this type of geological formatiomnh certain that there are quarries at less than 15
depth and that, for technical mining conditions guarry could be present below 50 m". The fuzzy
setA is here defined as the depths to which one magwetier quarries, accompanied by a degree
of membership measuring their influence on the e\fesence of a cavity”. Taking the above
example, Fig. 4.B. shows that the depths withinGHi&m interval (Zone [) are characterized by the
maximum degree of membership. Below this deptthénl5-50m interval (Zone Il of Fig. 4.B.),

the degree of membership decreases until belowdspth (Zone l1ll, Fig. 4.B.), where the expert
estimates that the presence of a quarry is noitgess/hich correspond to a null degree of
membership. Under the traditional approach, iftthheshold is fixed at 15 m, a cavity located at

16 m is automatically and unfavourably placed mm$hme class as that located at 50 m. The entire
sense of the “membership function” is thus théteiés one from data insufficiency (Ercanoglu and
Gokceoglu, 2004). Here the proposed transitiomesalr (Zone I1), but the expert could assume a
nonlinear curve. For instance, if the expert hasdadge (or observations) indicating that while
values located within zone Il are possible, theyravertheless very unlikely, convex functions can
be used (Baudrit et al., 2007). Note that the mestiye function joins the type of continuous
function defined by Thierry et al. (2009) to assggssum dissolution collapse susceptibility from
observations.

[Fig. 4 about here]
3.3. Addressing UNC 3: sensitivity to the experts’ cleoic

The membership function provides flexibility in tbefinition of the class of the controlling factors
by introducing the notion of gradual membershipisThnction reflects the judgment of a single
expert by means of thresholds defining the diffemmes of varying degrees of membership (Fig.
4.B.), which can vary from one expert to anotherréfine the uncertainty representation provided
by the membership function, different expert judgeis should then be taken into accounti.e. a
multiple of sources of information. Noteworthy, buam approach is similar when observing a given
physical phenomenon, which often relies on a waébbservational techniques to build
confidence in the physical process evidence.

A variety of methods exist to synthesize the valitgdof the judgements provided by the expert
panel ; we choose to summarize it by a pair of nasibp functions, respectively corresponding to
a “pessimistic” and an “optimistic” distributione@gpectively red and blue distribution, Fig. 5). The
uncertainty that the experts associate to thegraiais is quantifiable by the difference between th
results obtained by the two functions. For the cieg®cted in Fig. 5, the experts are certain of the
diagnosis above 50m depth and below 15m depthdiuteen these two values, the degree of
membership is accompanied by an uncertainty repreddy a range of values, which is maximal
here at 35m depth. To facilitate the decision-mglkirocess, it is proposed to compute a single
susceptibility index as a weighed average of bagmimership functions (optimistic and pessimistic)
based on the approach of Hurwicz (1951) in thelfafldecision-making under ignorance. The
choice of the weights is subjective and reflecesattitude of the decision-maker with respect to
risk (Baudrit et al., 2007). For instance, a weigh® % corresponds to a situation of complete
aversion to risk and the pessimistic bound is f[@gead. In this study, we choose a weight of 50%
between the optimistic and the pessimistic viewhst each quantitative criterion at any point of
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the studied territory is assigned a “medium” suibdjpy assessment accompanied by a variation
range related to the uncertainty of the expertiggment.

[Fig. 5 about here]
3.4. Addressing UNC 4: integrate the cartographic daarécision

The value of the susceptibility index closely deggenn the quality of the cartographic data
associated with the identified criteria, i.e. thputs of the membership function at each given
location of the territory. In geostatistics, thégkng variance supplies, for example, an estiméte o
the precision of the map displayed (Chilés andiDetf1999). In the absence of a local estimate
like this, the imprecision can also be given imédarm fashion over the studied domain (i.e. ‘the
precision of the measurement of the depth of thstsatum is accurate to within 3 metres’). This
information enable to defer the effect of the measent imprecision (whether uniform or
variable) on the final susceptibility index at egchnt (or at some only) of the studied territory.
Figure 6 shows the influence that an imprecisiofs 8fm on the depth, could involve on the degree
of membership at a given location (UNC4), integrgtalso the uncertainty the expert associate to
their diagnosis at each depth (UNC3). Althoughfihal value will be estimated by a single index
(that worth 0.5 at a depth of 30 m in the examiilstrated in Fig.6), the global uncertainty
introduces the potential range for the degreeseashbership integrating UNC 3 and UNC 4 (e.g.
the degree of membership at a depth of 30 m caniichy range between 0.10 and 0.75, Fig. 6).
The weight of the input data imprecision in theuweabf the overall confidence indicator is useful
for risk management purpose.

[Fig. 6 about here]
4. Mapping of collapse susceptibility incorporatungcertainty

The objective of this section is twofold: 1) deberthe methodology to compute the final collapse
susceptibility map and the information on uncetiato support decision-making ; 2) discuss the
results in particular considering the applicabibfyother commonly-used approaches, the
deterministic and the statistical (probabilistippeoaches, which do not have the shortcomings of
any method based on the contribution of an expethis view, the Arras territory located in the
North of France is used as an illustrative case.

4.1. Context of Arras territory

The Arras territory (Fig. 7) corresponds to a gedymunicipality of 20 towns (43 000 inhabitants)
covering a total area of 170 km2. Considering thelggical setting, the substratum is composed of
a chalky geological formation (Coniacian, Uppert@ceous) overlain by a Quaternary cover of silt
and loess over the whole region (Fig. 7).

The cavities risk collapsing is a major concernthar territory management. Two types of

underground structures more particularly raisirffadilties:

- Underground quarries of phosphated chalk (i.e. Kitsl), date back to the Roman times for the
first underground workings. In addition to the a$déime as an amendment, nodular chalk was
used in abundance as dimension stone during tieab@t 17th centuries. Worked in so-called
“catiches” i.e. corresponding to bottle-shaped wugeind mining galleries or by room and
pillar, they are specifically adapted for constimectand represent most of the inventoried
cavities. In addition, each Arras village is liketypresent a few “refuge”-type cavities
(commonly below churches, monasteries, convensslesa etc.), some of which used and/or
modified pre-existing underground quarries (Matiale 2004). This feature derives from the
Arras wars in the middle Ages;
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- First World War saps (i.e. covered trenches) afiéany underground structures dating back to
the First World War (1914-1918) and generally ¢stngf a trench and an inclined gallery that
leads to an underground room, enabling the arnop@o take shelter or try and penetrate the
enemy lines (LCPC, 2008). The network of wartinemthes is generally marked by
underground shelters (every 20 to approximatelyn®0which were very partially filled in after
the war. The wall rock of these cavities was se@datvhen possible, in the chalk formation to
achieve a better drainage whereas the roof gepeeathed the silt formation (Poitout and
Piraud, 2003).

[Fig. 7 about here]

The cavity inventory was primarily based on thenérenational public database
(http://www.bdcavite.net/), which collects all thenown” underground structures at the national
scale and aims at informing citizens, hence coutirigy to the natural hazards prevention policy led
by French authorities so that a total number of @@@erground quarries were identified and
localized in the studied territory (outlined in Figby a yellow star-type marker). The inventory of
the war saps (outlined in Fig. 7 by a linear blagiknbol) was mostly based on military maps
compiled by the Military Staff Office which locatke French and German trenches and so, the
positions of the saps in the studied territory. 8@®ctors like the Canadian National Vimy
Memorial Site are very well documented, but in gaheavailability of this information from

archival sources remains, however, patchy (Hutcmret al., 2008). The collapse inventory was,
however, relatively scarce with 48 collapse evesp®rted in the existing national database
(http://www.bdmvt.net/).

Hence, the Arras territory presents numerous oldngistructures of small to moderate dimensions
in a context characterized by an a priori “simpiedlogical setting, but by a complex historical
background. Some of these cavities have been abhadd®veral decades or centuries ago so that a
large number of them have been lost from the cideenemory (in relation with memory loss
syndrome well known in the field of mine closur8RIM, 2008) i.e. a majority of these cavities
have not necessarily been localized yet. Recehtyintense rainfall events of winter 2001- 2002
were followed by numerous surface damages and siekhThese collapse events were primarily
associated to "forget" underground structures, Wwhiould not have been discovered without the
occurrence of these meteorological events. The@nadjauthorities urgently prescribed 27 Risk
Prevention Plans (RPP), but without any other me&nanking the priority than choosing the
towns that were already affected by collapsesfiftare prescription of RPP, the local authorities
advocated the development of a methodology torsatifpes under budget constraints, in particular
regarding new data collection, with a particularegaaid to the treatment of regions with very
scarce data.

4.2. Susceptibility assessment and discussion

The susceptibility assessment can be based omueistic methods, which apply principles such
as limit equilibrium and finite element techniqgu€swvin et al. (2009) provides an illustration of
such an approach applied in the field of post-ngriazard assessments. These models require
standard rock mass characterization such as romkgth, fracture network description,
groundwater pressures, but also the descripti@awaty geometry, excavation and support
techniques. The latter data are seldom availablthéoconsidered underground structures of the
Arras territory as they were mostly constructed finandcrafted” manner and restricted to the
underground structures accessible for inspectipplying a deterministic approach based on a
geomechanics stability assessment as the onectarrieat the Vimy Memorial Site (Hutchinson et
al., 2008) would have then been tedious and thergération to the whole sector would have been
guestionable. Noteworthy the area of the site stily Hutchinson and co-authors reaching 0.91
km?2 to be compared to the 170 km? of the wholeistuterritory. Hence, the inherent nature of
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types of underground structures eliminated a syatierdeterministic approach.

In this context, pertinent controlling factors wénen defined (Table 1) by a panel of local experts
(geologists, hydrogeologists, historians, etc.gkled up by the spatial distribution of the recorded
cavities and ground instabilities (step 2 of thehudology, see section 2.2). Note that the analysis
(presence and rupture controlling factors iderdtfan) was carried out independently for each
cavity type.

[Table 1 about here]

An alternative objective way of developing susdafity mapping is by correlating statistically the
identified set of factors explaining the presentcthe considered cavities and the rupture process
from the recorded-past observations (cavity anhpsé inventoried). This can be achieved by
means, for instance of multi-variant regressionyamawith the use of GIS. An example of such an
application is provided by Galve et al., 2008.Ha tontext of the Arras territory, the applicatain

a pure statistical approach (also named probab)listas liable to result in very coarse and even
misleading correlations, because the historicatmaery was scarce especially for the collapse
inventory (with only 48 events recorded within giom of 170 km?), not to mention information of
poor quality, e.g—en the origin of the disturbaace-en the cavity at stakewhich rarely adequatel
filled in database.

Faced with incomplete information, the apparenisteal fit may have provided a false sense of
accuracy, because the statistical correlationgtadesults in terms of susceptibility outcomesewver
highly sensitive to small changes in the distribatof inventoried cavities or recorded past events.
This was shown through cross-validation proced(aersoted as “random validation” in Galve et
al. 2008) consisting in: (1) randomly partitionitig original set of observations into two subsets
(e.g. the first one composed of 90 % of the origaservations and the second one of 10 %); (2)
performing the susceptibility assessment usinditeesubset and (3) validating the analysis on the
second one. In this manner, we showed that theeptibdity of regions where collapse events were
actually observed (corresponding to the secondesjibsanged from high to low values. Hence, in
the context of Arras territory, the application‘ptire” statistical correlations would have been of
doubtful validity, particularly when used for expi@ation in zones with no data.

An alternative was then proposed relying on thastieal analysis of available data regarding
factors viewed as relevant and prominent giveridbal context (see Table 1), but tempered by
experts’ judgments to compensate for lack of okeems. Such an approach required adequate
mathematical processing tools (described in se@)dn deal with the shortcomings of traditional
scoring systems based on experts’ judgments (dsediin the introduction).

The studied sector is then decomposed into sgatabf elements. The choice of the spatial extent
of the grid is based on the the cartographic sugmecision related to each criterion. Thus, the
Arras territory was divided into 2 km grids, becadse criteria were mapped based on 1: 50 000
geological maps, on kriging-based procedures uswvery few boreholes available in the region
(hence associated with a large kriging-variance)@nhistorical data on the front lign location
(also associated with imprecision).

Each controlling factor was then associated wishigceptibility index calculated at each element of
the spatial grid (Step 3 of the methodology, seti@e 2.2). The index was calculated using one or
other of the previously defined tools, accordingvteether the associated criterion was categorized
as “qualitative” or “quantitative”.

4.3. Final outputs and use for decision-making

To compute the final susceptibility map, a commaethnd would simply consist in adding up the
indices, each of them level-headed by empiricabhisi attributed to each controlling factors (Forth
et al., 1999; Sanchez et al., 2007). Another amgbroalies on mathematical optimization (e.g.
Soriano and Simoén, 1995), which has no physicaliignce-ir-eurcase and requires a large
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amount of data. Due to the difference natures ofi eantrolling factors (i.e. the mathematical form
of their representation), we propose an alterngtreeedure for the combination of all indices:

- each qualitative criterion is given the same sigaiice by introducing no weighting, and is
considered to have a priori, the same role in thildution of cavities or disturbances.
Thus, when there are several qualitative critéhi@,indices given by the density functions
(value of same dimension, scaled between 0 antelSimply added together. The
importance of one criterion compared to anoth@nicitly contained in the spatial
distribution of the input sample and thus in thiiga calculated by the density function: the
more discriminating a criterion is, the greateritifeuence of the associated index will be in
the overall value;

- to combine the indices of the membership functigvien there are several quantitative
criteria), one uses fuzzy logic aggregation tod4AX” operator), i.e. the upper envelope
of the intersection of all these functions. Thieqgadure enables one to incorporate
information without compensating for the criteaphasizing locally the most
characteristic parameter of the susceptibility @aaglu and Gokceoglu, 2004).

- finally, the presence or rupture susceptibility @3RS) results from the product of the two
preceding terms. Since the value given by the meshiefunction varies from 0 to 1, the
membership function thus operates as a filter erdéimsity functions results.

The flowchart in Fig. 8 illustrates the mathemdtaggregation operators for assessing the rupture
susceptibly (RS) of the chalkpits in the Arras oegi

[Fig. 8 about here]

The final output (Fig. 9C) is a susceptibility nrgsulting from the crossing of a presence
susceptibility (PS) map (Fig. 9A) and a rupturecsgsibility (RS) map (Fig. 9B). As a result, the
four riskiest sectors are clearly outlined in thedged territory (red cell in Fig. 9C). Noteworhty
these identified sectors do not automatically gpoad to the more documented area. On the basis
of the three independent maps (PS, RS and CSjettision maker is provided with the whole
information whether it would be on the presencespsbility, on the rupture susceptibility or on
the final output in terms of collapse susceptipilithis allows a better understanding of the factor
controlling the risk and so a better communicagibout it. On this basis, the natural hazard
prevention policy can be adapted, for instancégeitocusing on the means to improve the
localisation of cavities or on the better underdiag of the rupture

mechanics.

[Fig. 9 about here]

For illustrative purposes, let us consider thettoin located in a zone where the presence
susceptibility is qualified as “moderate to higkid. 9A), whereas the rupture susceptibility is
relatively low (Fig. 9B). The analysis shows thastsector is not concerned by collapsing, since
the cavities present in this zone would tend tstable (Fig. 9C). However, the first map (Fig. 9A)
confirms that chalkpits may exist in this sectaonjeth could become a new constraint to be taken
into account for further underground projects.

Studying the sensitivity of these results to changehe input values of the methodology, provides
additional information on corresponds the uncetyasource UNC3 (uncertainty that the experts
associate to their diagnosis, see section 3.3)JiN@4 (cartographic data imprecision, see section
3.4) to support decision-making.. In this view, todlapse susceptibility mapping (Fig 9C) is
associated with a confidence indicator (Fig 9Dyeklted as the maximum value of this indicator
associated to each individual criterion. Thus,mst @oint of the studied territory, the decision maak
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is provided with useful guidelines for risk managty but also for risk communication (e.g.
Ellingwood and Kinali, 2009):

(1) an estimate of the absolute uncertainty assatia the susceptibility index (i.e. a range of
values for this index). As an illustration, letaensider the “b” town, which is situated in a
“moderate” collapse susceptibility zone (Fig. 968ig. 9D indicates that this result is associated
with a low level of confidence, hence should bestdered cautiously, and the analysis should be
completed with further investigations or additionallection of data to reduce uncertainty locally.
On the contrary, the “low” collapse susceptibiliigne concerning the “a” town (Fig. 9D) is more
reliable as outlined in Fig. 9D ;

(2) the percentage of the uncertainty stemmingeeittom the uncertainty in PS and RS as depicted
in the percentage indicated in Fig. 9D.

For instance, unlike its surroundings, the levataifidence at the “d” town is low and mainly
results from the uncertainty on on the rupture spsbility (at 80 %), which is related to the cheic
of the thresholds for the definition of the membgy<unction.

5. Concluding remarks and discussion

Assessing the collapse susceptibility of aband@aetties at a regional scale is associated with
large uncertainties that are mainly related toviéry nature of the phenomena, but also to the
difficulty in collecting exhaustive information atich a scale on often "forgotten” structures. Ia th
context, the expert’s role is essential, becauds able to synthesize the information resultirapfr
the inventory and from the commonly imprecise,af mague, criteria on the basis of his experience
and his knowledge of the regional geological arstidnical and economic context.

We have developed two tools for processing thisrmation in order to give flexibility to this step
and manage the uncertainty inherent in the expeftsmation. One tool, based on the "weight of
evidence” theory (Bonham-Carter, 1994), is for ngang the uncertainty due to the heterogeneous
spatial distribution of the data. The second tbaked on the fuzzy set theory (Zadeh, 1965), is for
managing the uncertainty on the univocal definiobthe class boundaries of the decision criteria.
It should be noted that the method does not aigixothe criteria for assessing the collapse
susceptibility of underground structures in gendrat offers management tools once the most
relevant of these have been identified.

The quality of the obtained results depends egtwalthe relevance of the selected criteria and thu
on the understanding of the phenomena (Upchurch_iihefield, 1988; Benson et al. 2003;
Hubbard, 2003; Brinkmann et al., 2008). Althougé thethod endeavours to control and limit the
subjectivity of expert judgement, the expertissti the central point. Its role is mainly in sefieg
the susceptibility criteria that must be indepengdexievant and exhaustive to account for the
phenomena. It would be wrong and “dangerous” tdt loneself to the most obvious criteria and
ignore more complex criteria that also have a mojestifying the observed spatial distribution.eTh
expert must also ensure that he draws up investthed are sufficiently representative of the
existing situation so as not to distort the corcdtom of the tools.

Starting from the expert judgement, the developethod ends with a quantitative assessment of
the susceptibility levels thanks to two mathematicals that make it possible to determine the best
weight reflecting the influence of each controllicriterion. It differs from the traditionally used
approaches by:

- dealing with all types of criteria, knowing thagnsity functions make it possible to extend
gualitative information, while being strict concrg the weight allotted to the spatial units and
freeing oneself of a subjective theoretical weilggti

- limiting the threshold effects classically intcamed by the expert’s judgement;

- freeing oneself of the spatial distribution hetgneity of the initially existing punctual
information: the analysis no longer favours thet lblegumented sectors;

- limiting the weightings and compensatory effetiew combining the criteria;
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- measuring the risk taken by the expert in hidyang which allows him to remain prudent in the
resulting diagnosis; This task implies assessiegettpert’s “reliability”, aggregating the
judgements provided by the expert panel and syizingsthem for practical use in decision-making
process. The latter taskmay be tedious, espeeidlgn information is conflicting (e.g. Destercke
and Chojnacki, 2008) and constitutes a perspeftiviirther works.

Using the final cartographic results, territorighmagers can quantify the issues affected by the
collapse of each type of cavity and thus rank vithe@y are likely to accept or reduce while
integrating the uncertainty of the expert’'s diagaoshe proposed maps enable them to access the
information sources and have access to the tedramgpaments. The increased perspectives thus
facilitate the acceptance of the hazard by thesitatimaker and respond to planning and risk
management requirements on a regional scale.
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TABLE CAPTION

Table 1 Controlling factors for the Arras site.

Chalkpit
s (+ Military Controlling Factors Nature Cartographic
refuge- | sap support
cavities)
Geological: nature of the s .
X substratum formations qualitative | Geological map
Presence Historical: Location of L Military maps
susceptibility X the front lines qualitative
(PS) —orica] —
H_|stor.|ca. proximity to o Map with church
X historical centres of each quantitative .
. locations
Artois village
X Depth: overburden titati Overbuden
thickness quantitative isopach
Geological: nature of the
X overburden formations | qualitative | Geological map
(permanent factor)
Rupture
susceptibility Netvyork
(RS) Hydrology: surface watef persistence and
X X infiltration qualitative | development
(triggering factor) map (named
IDPR)
Hydrogeology: water Very high water
X table level rise rise quantitative | piezometric level

(triggering factor)

of 2001
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FIGURE CAPTIONS
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Fig. 1. Flowchart for assessing collapse suscéipyilbf abandoned underground structures.
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Fig. 2. Generic example of the application of thedified “weight of evidence” to take into account
gualitative criteria. 2A: theoretical spatial uni2B: spatial units applied to a geological criberi
controlling the presence of quarries in the Lobepartment of France.
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Fig. 3. Graphical representation of the Aef) under the classical Boolean theory; B) undher t
fuzzy set theory.
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Fig. 4. Method of constructing the membership fiorctelative to quantitative criteria: depth of the
exploited geological formation.
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Fig. 5. Definition of a pair of optimistic and pe@ssstic scenarios to deal with the subjectivitytie
assessment of the threshold levels. The green ceprvesents the value of uncertainty on the
degree of membership.
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Fig. 6. Definition of the global uncertainty inte¢ging cartographic input data and expert choice

uncertainty.
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Fig. 7. Geological map at a 1/50 000 scale of tira#\region and the cavities inventoried.
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Fig. 8. Mathematical aggregation operations focwaling the rupture susceptibility index (RS).

4 controlling factors identified by experts
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Example of the chalkpits, in the Arras region.
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Fig. 9. Combination of the susceptibility of presePS (Fig. 9A) of cavities and of the rupture
susceptibility RS (Fig. 9B). The result constituties collapse susceptibility map of chalkpits ia th
Arras territory (Fig. 9C) combined with the mappwigconfidence indicator.
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