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Abstract: A hybrid method combining finite element and 4
th

-order finite difference techniques is 

developed to model SH and P-SV seismic wave propagation in a 2D elastic medium with irregular 

surface topography. Both the classic staggered grid finite difference scheme and the partially 

staggered grid scheme are tested. The accuracy of the hybrid method is studied by comparison 

with a semi-analytical and another numerical method. Subsequently, to study the amplification, 

numerical simulations of seismic wave propagation in a series of hills are carried out and 

compared with the single-hill case. Depending on the position of the source in relation to the 

topography, the ratio between the heights and lengths of the hills or the ratio between the lengths 

of the hills and the wavelength, the presence of several hills as opposed to a single one can 

increase the amplification effect due to topography. This study highlights the fact that, when 

evaluating topographic site effects, surrounding topography must be taken into account in addition 

to local topography. 

Keywords: Finite difference, Finite element, Hybrid methods, Seismic wave 

propagation, Topographic effects 
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Introduction 

Simulating ground motion at given sites is an essential task in the 

framework of seismic hazard studies. In most practical cases the source-site 

distance is large enough and local conditions are fairly simple from a geometrical 

standpoint; soil behaviour is therefore simulated in a 1D elastic/anelastic column 

under seismic excitation at the base of the column. However, some cases are 

much more complex, precluding a 1D approximation. It is known that a 2D or 

even 3D structure close to the site considered can significantly affect ground 

motion (e.g. Griffiths and Bollinger 1979, Hartzell et al. 1994, Spudich et al. 

1996). Furthermore, the characteristics of the incident wave also become 

important factors when the source-site distance is short. To deal with a 2D (and 

3D) context, numerical simulations are needed, since the characteristic ground 

motion features vary on a case by case basis, and it is accordingly difficult to 

quantify the effect empirically.  

Ground motion can be simulated using volumetric methods such as those 

involving finite differences or finite elements. One of the most popular methods 

for simulating the seismic wave propagation in an elastic medium numerically is 

the finite difference method (FDM) (e.g. Madariaga 1976; Levander 1988) due to 

its simplicity, efficiency and ease of implementation. However, it is not capable of 

simulating complex boundary conditions like surface topography numerically 

(Ohminato and Chouet 1997). This is quite inconvenient, for taking into account 

sedimentary basins with strongly contrasted impedances or irregular topography is 

extremely useful when studying site effects for seismic hazard evaluation. As the 

finite difference method generally uses a uniform grid, accurate modelling of 

sedimentary layers near the surface with slow wave velocities involves a dramatic 
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increase in the computational dimensions of the model in a large majority of 

instances (see Aoi and Fujiwara 1999 for an exception). An alternative method is 

the finite element method (FEM). It allows the use of irregular grids with 

elements of different sizes and geometries and is therefore quite useful to simulate 

complex geometry and to model strong heterogeneities in the velocity structure. 

However, this method requires significantly more memory than the finite 

difference method. A derivative version of the finite element method, of higher 

order, called the spectral element method (SEM) (Komatitsch and Vilotte 1998), 

has been developed and is very accurate and faster than any classic finite element 

method. Nonetheless, the finite difference method is still more attractive from the 

standpoint of the required computing resource, and it seems difficult to implant in 

the SEM the non-linear dynamics required in soil dynamics.  

Various combinations of numerical methods for simulating seismic wave 

propagation in an elastic/anelastic medium were proposed in a large number of 

studies: hybrid discrete wave-number – finite difference method (Fäh 1992; 

Zahradník and Moczo 1996), hybrid boundary element – finite element method 

(Bielak et al. 2003; Gatmiri et al. 2008), and many others. Such a combination 

confers advantages not provided by a single method on its own. In particular, the 

combination of finite difference and finite element methods is expected to retain 

the efficiency of the finite difference method at large scale and to introduce the 

geometrical flexibility of the finite element method locally. Therefore, in this 

paper, we try to adapt the hybrid method previously proposed by Moczo et al. 

(1997) and Ma et al. (2004), to study ground motion resulting from irregular 

surface topography. We use various finite element and finite difference methods 

to simulate wave propagation in a 2D elastic medium. The finite difference 

method makes it possible to model both a point source and an extended fault: we 
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thus will be able to model the effects of the topography on the wave generated by 

a complex source. Previously, De Martin et al. (2007) were able to simulate the 

wave propagation sequentially from the FDM to FEM domains by transferring the 

wave field information along the boundary. This is a practical and convenient way 

to simulate ground motion locally for the site considered. However, it should be 

noted that the local wavefield in the FEM does not impact the regional wavefield 

in the FDM. This assumption and scheme are accurate enough in many cases; 

however, in this study, we highlight cases where local disturbance in the 

wavefield is also important at the regional scale. This is why we need a complete 

hybrid simulation technique. Many earlier studies have numerically modelled 

seismic wave scatter around a single canyon or hill (e.g. Gaffet and Bouchon 

1989, and many others), mainly in order to compare the results of numerical 

approaches with an analytical or semi-analytical solution. Also, some authors 

have applied numerical methods to study wave propagation in more complex real 

cases. However, few systematic studies have been conducted to determine the 

effects on ground motion of the interaction of a series of irregular topographies. 

To do so, we need to understand how the surface irregularities interact with each 

other. In the following sections, we begin by verifying our numerical approach 

and continue with several parametric studies. We will discuss how topographic 

amplification and resonance phenomena appear in various topographical settings.  

The numerical method  

In this section, we briefly explain the numerical approach of the hybrid 

finite difference - finite element method following Ma et al. (2004). The 

computational domain is divided into three sub-computational areas: one where 

only a standard finite difference method (FDM) is used to solve the seismic wave 
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equation, a second where only an explicit finite element method (FEM) is used, 

and a third interface area where both FDM and FEM are used and the finite 

element mesh is made up of regular square meshes to facilitate interpolation of the 

wave field between the FD and the FE schemes. Examples of the domain partition 

are shown in Figures 1a and b.  

Ma et al. (2004) used the standard staggered finite difference grid 

(Madariaga 1976; Virieux 1986). As collocation points (stress and velocity) are 

different, i.e., shifted, in each scheme, the velocity field is assumed to be a 3
rd

-

order polynomial function and interpolated. This negatively impacts accuracy, but 

the use of higher-order interpolations might cause instabilities (Ma et al. 2004). 

This is a weak point in this hybrid method. Although Badea et al. (2008) do not 

specify what their finite difference method entails, their previous work (Wolf et 

al. 2006) tested different schemes, including a partially staggered finite difference 

grid (Saenger et al. 2000). The advantage of this latter grid scheme is that both 

horizontal and vertical velocities are computed for the same place, so no 

interpolation is needed. Here, we have adopted both finite difference schemes. As 

to the finite element scheme, we have tested higher order meshes, that is, spectral 

elements as well. However, this did not work in the trials we conducted. Indeed, 

the use of spectral elements results in high-order interpolation schemes in the 

interface between FDM and SEM areas. We believe that this does not ensure 

stability in the computation, as was the case in the study by Ma et al. (2004). 

The influence of boundary conditions on the results of the computation is 

well known. For all the model boundaries excepting the free surface, where only 

finite differences are used, we introduce a convolutional PML (Komatitch and 

Martin 2007) to avoid artificial reflections. On the free surface, both finite 

difference and finite element methods are used. In the FD part, we use a stress-
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imaging method (Graves 1996) to model the free surface. In the FE part, the free 

surface condition is obtained by imposing a zero value of stress in the variational 

formulation. 

Numerical verification for simple cases 

Each part of the hybrid method was numerically verified for various wave 

propagation settings. Now we need to verify the hybrid method for some simple 

cases by comparison with analytical solutions and another numerical method. 

Figures 2 and 3 show classic examples where the plane wave propagates 

upward in a homogeneous elastic medium towards a semi-circular canyon of 

radius a (model geometry shown in Figure 1) for which the solution is (semi-) 

analytically given by an eigenfunction expansion method (Trifunac (1971; 1973) 

for a SH problem and Wong (1979; 1982) for a P-SV problem) and by a wave-

number method (Kawase 1988) for both cases. We suppose an incident wave in 

the FDM domain with a second-order Ricker function:  
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where the characteristic angular frequency is given by ptπω 20 = , and for the 

calculation we take ( ) aπβω 20 = , where β  is the shear wave velocity. The 

Poisson ratio is taken as 1/3 for the P-SV problem. The size of the finite 

difference grid spacing is 0.05 * a. The size of the irregular finite element meshes 

is approximately equal to the finite difference grid spacing (see Figures 1a and b). 

The time step is taken as 0.0005 * (a / β). Figures 2 and 3 represent the SH and P-

SV cases respectively, showing the displacement amplification at main frequency 

πω 200 =f  along the ground surface. Along the abscissa we have plotted the 
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distance from the centre of the canyon, normalized by the canyon radius a. On the 

ordinate axis is the displacement amplification.  

Figure 2 shows the case of a null wave angle of incidence (top panels) with 

the fully staggered grid (FSG) finite difference scheme (left panel) and the 

partially staggered grid (PSG) finite difference scheme (right panel), and the case 

of a 30° anticlockwise wave angle of incidence (bottom panels) for the FSG (left 

panel) and PSG (right panel) cases. The line shows the numerical results obtained 

with the hybrid method, while the points represent the results with the (semi-) 

analytical method taken from Kawase (1988). Figure 3 shows the case of a 

horizontal incident wave (top panels) and a vertical incident wave (bottom panels) 

with a null wave angle of incidence. The solid and dotted lines show respectively 

the horizontal and vertical amplifications, while the points represent the results 

with the (semi-) analytical method taken from Kawase (1988). As the edges of the 

canyon are not smooth (discontinuous in their spatial derivatives), some influence 

does remain, especially outside the canyon in the P-SV case. This occurs because 

the reflected waves propagate away from the canyon following the given 

geometry. The same difficulty is encountered even with the discrete wave-number 

method (Kawase 1988) with respect to Wong’s solution (1979; 1982). The SH 

problem is always easier to reproduce by any numerical methods. We observed 

that a slightly better result is obtained if a partially staggered grid is used for the 

FDM as opposed to a fully staggered grid. This may be because the partially 

staggered grid does not require additional interpolations. However, this difference 

remains minor. 

Further numerical tests are carried out through the comparison with a 

spectral element method (code EFISPEC2D, De Martin 2011). The simulation of 

PSV-wave propagation inside a hill is performed (Figure 4). The height of the hill 



8 

is normalized to 1 and the ratio of hill-height to length is 0.3. Thus the P-wave 

velocity is 1.732, the S-wave velocity is 1 and the density is 1. At the lower 

boundary of the medium, a horizontal displacement is imposed for which the time 

function is given in Equation (2), 
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with ts = 2 and tp = 1. The size of the finite difference grid spacing is 0.05. The 

time step is 0.0005. The finite element mesh is composed of 5704 nodes and 9912 

elements (950 square elements in the FD-FE interface and 8962 triangular 

elements in the FE unstructured mesh). It corresponds to about 20 nodes per 

wavelength for a frequency of 1/tp. The boundaries of the finite difference domain 

are set far enough away from the canyon to avoid artificial reflections. The wave 

angle of incidence is α = 0° (horizontal motion only). The ratio of the amplitude 

of the frequency response on the free surface and the incident wave amplitude at 

main frequency f0 = 1/tp = 1 is computed for the hybrid method and the spectral 

element method. Figure 5 shows the displacement amplification at main 

frequency f0 versus the horizontal position. The top and bottom panels correspond 

respectively to the horizontal and vertical components, normalized by the 

horizontal amplitude for the flat free-surface case. It should be noted that no 

vertical component exists in the case of flat free surface. The solid line represents 

the results with EFISPEC2D, while the dotted line represents the results with the 

hybrid method. Good agreement is observed between the two different numerical 

methods, thereby validating the implementation carried out in this study.  
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Application: the interaction of topographic 

irregularities  

Model setting 

As explained in the previous section, a single topographic irregularity (a 

canyon or a hill) has been studied by many researchers, and many realistic 

applications are also found. Nevertheless, to the best of our knowledge, few 

studies deal with the interaction of topographic irregularities. This section aims to 

ascertain how a series of hills interact as compared to a single irregularity (a hill). 

Figure 6 shows the model geometry and Table 1 summarizes the model 

parameters. Henceforth, for the purposes of our discussion, we are designating the 

hills No. 1 to 7 from left to right. The central hill, No. 4, is located at the middle 

of the model, i.e., distance 0 km. Each hill is 400 metres long and 200 metres high 

(see Figure 6), so that the hill length is initially much smaller than the wavelength 

of around 2100 metres. The series is composed of seven identical hills, with the 

same geometry. The total length of the topographic irregularity is thus 2800 

metres. Although our focus is on a series of irregularities, for the sake of 

comparison, we also examine the case of a single hill. 

The earthquake source is given as a 1250 m-long finite fault in the FDM 

domain. The source position varies to allow us to study the effect of the angle of 

incidence on the amplification factor. The source mechanism is given by dip δ = 

45° and rake λ = 90° (reverse faulting) on the 2D plane considered (see Figure 6).  

Simulation results 

Figure 7 shows snapshots of the wave propagation, magnified around the 

surface topography, for the case where the source is located 5 km to the left of the 
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centre of the model and at a depth of 5 km. At time step 2.5 s, we can observe the 

P-wave arrival at the level of the hills and at time step 3.5 s the S-wave arrival. 

Then, the S-wave is trapped inside the hills by the reflections along the edges of 

the hills from time step 4.5 s onwards. The wave field is deformed by the 

reflections even outside the hills (time step 6.5 s). Figure 8 shows the velocity 

waveforms along the ground surface for the horizontal (top) and vertical (bottom) 

components. The abscissa represents time and the ordinate, the distance from the 

centre of the topographical model. We can identify the P and S-wave arrivals and 

a reflected S-wave (in the negative direction). The ground motion remains 

significantly high well after the S-wave arrival between -1400 and 1400 metres, 

where the topography is irregular. 

To quantify the interaction of topographic irregularities, we have selected 

peak ground velocity (PGV) at the surface for our discussion, one of the most 

important parameters in earthquake engineering. First Figure 9 shows PGV values 

for different situations. The first three panels represent the effect of the hill 

location (a single hill corresponding to the positions of Nos. 1, 4 or 7, cf. Figure 6) 

with respect to the source, then, for the sake of comparison, the case where there 

is no topography (a flat free surface), as a reference ground motion, and finally the 

series of seven hills. First of all, we note that every peak of PGV corresponds to 

each hill, except for the third example (single hill location at No. 7 = 6.2 km from 

the source), where the hill is located around the node of the seismic wave 

radiation pattern.  

Moreover, the hills close to the source (towards No. 1) seem to have a 

higher PGV than the hills far from the source (towards No. 7). However, when we 

look at the ratio of PGVs in the topographic free surface case and PGVs in the flat 

free surface case (Figure 10), we note that the amplification due to the topography 
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is lower for the hills located close to the source than for the hills located far from 

the source. Indeed, the PGV ratio is lower for the hills nearer from the source than 

for the hills farther from the source in this particular geometrical configuration, 

contrary to what would naturally be expected. We also note a motion de-

amplification at the right-hand side of the farthest hill from the source (No. 7). 

However, no de-amplification occurs at the trough between the hills. In the case 

of the series of hills, the PGVs on top the hill farthest to the left (No. 1), the one in 

the centre (No. 4) and the one farthest right (No. 7) are 0.123, 0.107 and 0.065, 

respectively, whereas in the cases of the single hill in locations corresponding to 

the former case, the PGVs are 0.127, 0.085 and 0.035 respectively. The motion 

amplification due to the neighbouring topography is thus very different depending 

on the geometrical configuration. When there is no topographic irregularity 

between the source and the site considered, as in the case of the hill farthest to the 

left (No. 1), the ground motion amplification is negligible. However, when the 

topographic irregularity (hills) lies between the pass, as in the case of the hill 

farthest to the right (No. 7), the motion amplification increases (about twice in this 

example). 

The influence of source location (incident wave direction)  

The effects of the distance of the hills from the source, of the ridge 

steepness and of the ratio between wavelength and the lengths of the hills are 

investigated. All sets of parameters are given in Table 2. 

In the first set of parameters, the distance between the source and the 

centre of the topography varies: the source is located successively at 2, 5 and 10 

km to the left of the centre of the topography. The focal depth remains at 5 km. 

Figure 11 shows horizontal PGV versus distance from the centre of the 
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topography for the single hill located at the centre of the model (top panels) and 

the series of hills (bottom panels). The hill closest to the source is not necessarily 

the one that has the highest PGV on top, due to the directivity of the extended 

fault source. 

Figure 12 shows the ratio of horizontal PGV with and without the 

topography. We can observe that the ratio for the series of hills is higher than for 

the single hill. In both topographic configurations, the PGV amplification is 

highest for the source located 5 km from the centre of the topography. Indeed, as 

the dip of the finite fault is 45°, the hill is then located in the rupture direction. In 

the case of the source located 2 km from the centre, for the hills nearer the source, 

the wave incidence is nearly vertical and the PGV ratio is rather low, whereas for 

the farther hills, the wave incidence angle is higher, inducing a higher PGV ratio 

due to reflections on the edges of the hills. This phenomenon does not appear for 

the case with the farthest source.  

Finally, Figure 13 shows ground velocity amplitude at frequencies of 0.5 

Hz (top panels) and 1.5 Hz (bottom panels), still for the same calculations. For the 

low frequency, each peak corresponds to the top of one hill, but the variation is 

rather small compared to the ground-motion tendency over a large scale. For the 

higher frequency, we observe a sharper response corresponding to the hills 

together with a de-amplification for some of the hills. The hills affected change 

according to the source distance.  

The influence of hill geometry 

In the second set of parameters, the length (L) of the hills is unchanged 

(400 m) but the height (h) is set successively at 150, 200 and 300 m, 

corresponding to height-to-length ratios of 0.375, 0.5 and 0.75. The source is 
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located 5 km to the left of the centre of the topography and at a depth of 5 km. 

Figure 14 shows horizontal PGV for the single hill located at the centre of the 

model (top panels) and for the series of hills (bottom panels) for the three height-

to-length ratios. In all cases, the spatial variation in PGV is similar, that is, on top 

of the hills closer to the source, the PGV is higher. Figure 15 shows the ratio of 

horizontal PGV with and without the topography. Once again, it is found that the 

ratio for the series of hills is higher than for the case of the single hill. For both 

topographies, the ratio is amplified when hill height increases. The PGV ratio is 

lower for the hills nearer the source than for those farther away for this particular 

source location, contrary to what would naturally be expected. Finally, Figure 16 

shows ground velocity amplitude at frequencies of 0.5 Hz (top) and 1.5 Hz 

(bottom). 

The influence of incident seismic wavelength 

It is known that the frequency content of the input motion strongly affects 

site amplification. While it is considered that topographic effects are negligible for 

long wavelengths, the effects are highest for wavelengths near the horizontal 

length of the topography. In this study, the length of a single hill is smaller than 

the wavelength; however, the size of the total topography comprising the seven 

hills is comparable to the wavelength. We made the ratio between wavelength and 

the lengths (L) of the hills vary (third model set in Table 2). The finite fault source 

mechanism, the medium parameters and the hill shapes remain unchanged, but the 

length of the hills is set successively to 200, 400 and 800 m while the source 

depth and distance to the left of the centre of the topography are set to 2.5, 5 and 

10 km, in order to preserve the proportional geometry with respect to the given 

frequency. The characteristic source frequency equals the inverse of the duration 
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of the source time history function, i.e., 1 Hz. The characteristic wavelength is 

thus the S-wave velocity (c) multiplied by the source period (T), that is, equal to 

2100 metres. The ratio of the lengths of the hills over this wavelength is thus 

successively 0.095, 0.19 and 0.38. Figure 17 shows horizontal PGV for the single 

hill located at the centre of the model (top panels) and for the series of hills 

(bottom panels) for the three hill-length/wavelength ratios. In all cases, the PGV 

on top of the hills closer to the source is higher than the PGV on the other hills. 

Figure 18 shows ratio of horizontal PGV with and without the topography. As in 

both previous sets of parameters, the ratio for the series of hills is higher than for 

the single hill case. The PGV ratio is once again lower for the hills nearer from 

the source than for the hills farther from the source. Finally, Figure 19 shows 

ground velocity amplitude at frequencies of 0.5 Hz (top panels) and 1.5 Hz 

(bottom panels). For the largest hills (largest L/cT), we observe a de-amplification 

as compared to the two other cases. 

Discussion 

In all previous parametric studies, we chose a series of seven identical 

hills. The height of the hill is now constant and set to 100 m, but the lengths of the 

hills increase from 250 m to 550 m by an increment of 50 m from left to right and 

from right to left (fourth model set). The source is located 2.5 km to the left of the 

centre of the topography and at a depth of 2.5 km. Figure 20 shows horizontal 

PGV versus distance from the centre of the topography on top. On the left panel, 

the longest hill (550 m long) is located farthest to the right and the shortest hill 

(250 m long) farthest to the left, and vice versa on the right panel. On the centre 

panel, all hills are identical (400 m long). The bottom panels show the ratio of 

horizontal PGV with and without the topography. In the three configurations, we 
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observe a de-amplification for the hills located opposite from the source. For the 

hills located near the source, there is little difference between the three 

geometrical configurations. 

It is difficult to establish systematic rules about amplification resulting 

from topography on the basis of this study, as the wave field depends strongly on 

the given parameters both at earthquake source and local site. The presence of a 

series of hills can either amplify or de-amplify the PGV as compared to the case 

of a single hill, depending on the geometrical configuration. Table 3 summarizes 

the PGV on top of a single hill for each set of parameters, the PGV on top of the 

hill at the centre of the series of hills and the ratio between these two PGVs. 

Simulations with the first set of parameters show that when the topography is 

aligned with the rupture direction, the signal amplification due to the interaction 

between the hills increases. 

Moreover, the hill where the PGV ratio is the highest can be the farthest 

from the source or in the middle of the topography, depending on the geometrical 

configuration. No set of parameters gave a maximal PGV ratio on the hill closest 

to the source for this particular source model. Nevertheless, we can conclude that, 

for both the single hill and the series of hills, the PGV ratio is amplified when the 

ratio between height and length of the hill increases. 

It is useful to mention some computing aspects for further applications. In 

the example of the last section, the number of finite difference grid nodes is set to 

220 x 70 = 15400 for all sets of parameters. The number of finite element nodes 

varies, depending on the size of the hills. For the 200 m high and 400 m long hills, 

our mesh is composed of 8077 nodes and 10563 elements. With these parameters, 

our computations last about two hours on a single CPU, dominated by the finite 

element calculation. However, we did not try to optimize the code nor the size of 



16 

the meshes. Indeed, we have around 20 grids per wavelength in the FD part of the 

domain, whereas 5 or 6 grids would be enough to avoid numerical dispersion 

(Moczo et al. 2000). In the FE part, the number of nodes per wavelength is much 

higher (see Figure 6), and it would be possible to reduce the number of nodes 

while maintaining a good accuracy of the computation. For further applications, a 

key task should be optimizing the finite element meshing and its solver. As the 

finite element method is powerful not only for the simulation of a complex 

geometry but also for various nonlinear problems, this numerical approach would 

be useful. 

Conclusion 

A hybrid method combining finite element and 4
th

-order finite difference 

was developed to model SH and P-SV seismic wave propagation in a 2D elastic 

medium with topographic free surface. Both the classic staggered grid finite 

difference scheme and the partially staggered grid scheme were tested. The 

accuracy of the hybrid method was studied by comparison with semi-analytical 

and numerical methods. To illustrate the method, numerical simulations of 

seismic wave propagation across a series of hills were carried out and compared 

to the case of a single hill. Depending on the position of the source in relation to 

the topography, the ratio between the heights and the lengths of the hills or the 

ratio between the lengths of the hills and the wavelength, the presence of several 

hills as opposed to a single hill can increase the amplification effect due to the 

topography. This study highlights the fact that, when evaluating topographic site 

effects, surrounding topography must be taken into account in addition to local 

topography. 
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Figures 

 

Fig. 1a. Mesh used for the simulation with the fully staggered grid. For the area where both FDM 

and FEM are computed, the finite-element mesh size is half the finite-difference grid spacing. 

 

 

Fig. 1b. Mesh used for the simulation with the partially staggered grid. For the area where both 

FDM and FEM are computed, the finite-element mesh size is the same as the finite-difference grid 

spacing. 
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Fig. 2. Displacement amplification of SH waves versus distance from the canyon centre. 
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Fig. 3. Displacement amplification of P-SV waves versus distance from the canyon centre. 
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Fig. 4 Mesh used for the comparison with the spectral elements method. 
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Fig. 5. Frequency response versus the non-dimensional horizontal coordinate. 
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Fig. 6. The geometry of the model composed of a series of seven hills.  
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Fig. 7. Snapshots of the seismic wave propagation for the horizontal (left) and vertical (right) 

components of velocity. 
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Fig. 8. Synthetic seismograms of the simulation. 
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Fig. 9. Horizontal PGV versus distance from the centre of the topography. The three single hills 

correspond respectively to the positions of Nos. 1, 4 and 7 of the seven-hill case. 
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Fig. 10. Ratio of PGV versus distance from the centre of the topography  
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Fig. 11. Horizontal PGV versus distance from the centre of the topography. 
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Fig. 12. Ratio of PGV versus distance from the centre of the topography. 
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Fig. 13. Ground velocity versus distance from the centre of the topography for selected 

frequencies. 
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Fig. 14. Horizontal PGV versus distance from the centre of the topography. 
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Fig. 15. Ratio of horizontal PGV versus distance from the centre of the topography. 
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Fig. 16. Ground velocity versus distance from the centre of the topography for selected 

frequencies. 
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Fig. 17. Horizontal PGV versus distance from the centre of the topography. 
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Fig. 18. Ratio of horizontal PGV versus distance from the centre of the topography. 
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Fig. 19. Ground velocity versus distance from the centre of the topography for selected 

frequencies. 
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Fig. 20. Horizontal PGV (top) and ratio of horizontal PGV (bottom) versus distance from the 

centre of the topography. 
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Tables 

Model parameters Value 

Medium parameters Width 20 km 

Height 6 km 

P-wave velocity 3637 m.s
-1

 

S-wave velocity 2100 m.s
-1

 

Density 2500 kg.m
-3

 

Source parameters Dip 45° 

Rake 90° 

Fault slip 0.4 m 

Rise time 1 s 

Rupture velocity 2500 m.s
-1

 

Fault length 1250 m 

Depth 5 km 

Distance from centre 5 km 

Computation parameters Grid spacing 100 m 

Time step 2.5 10
-4

 s 

Tab. 1. Model parameters. 
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Parameters Hill length Hill height Source depth Source distance 

First model set 1 

400 m 200 m 5 km 

2 km 

2 5 km 

3 10 km 

Second model set 1 

400 m 

150 m 

5 km 5 km 2 200 m 

3 300 m 

Third model set 1 200 m 100 m 2.5 km 2.5 km 

2 400 m 200 m 5 km 5 km 

3 800 m 400 m 10 km 10 km 

Fourth model set 
1 250 to 550 m  

100 m 

 

2.5 km 

 

2.5 km 2 400 m 

3 550 to 250 m 

Tab. 2. Sets of model parameters. 

 

 First model set Second model set Third model set 

1 2 3 1 2 3 1 2 3 

PGV on top of the single 

hill 

0.121 0.086 0.056 0.066 0.086 0.117 0.081 0.086 0.064 

PGV on top of the hill at 

the centre of the series of 

hills 

0.113 0.107 0.045 0.082 0.107 0.115 0.094 0.107 0.076 

Ratio of PGVs 0.93 1.24 0.80 1.24 1.24 0.98 1.16 1.24 1.19 

Tab. 3. PGV for each set of parameters. 

 


