Geochemical Model of CO2 impact at the Well-Caprock-Reservoir interfaces.
Frédéric Wertz, Philippe Blanc, Antonin Fabbri, Fabrizio Gherardi

To cite this version:
Frédéric Wertz, Philippe Blanc, Antonin Fabbri, Fabrizio Gherardi. Geochemical Model of CO2 impact at the Well-Caprock-Reservoir interfaces.. EGU General Assembly 2011, Apr 2011, Vienna, Austria. hal-00630967

HAL Id: hal-00630967
https://hal-brgm.archives-ouvertes.fr/hal-00630967
Submitted on 11 Oct 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Well – Reservoir – Cap rock INTERFACE

Modeling Cement CO$_2$-Alteration Mechanisms

Frédéric Wertz, Philippe Blanc, Antonin Fabbri, BRGM Orléans
Fabrizio Gherardi, CNR Pisa
Emannuel Jobard, Jérôme Sterpenich, Jacques Pironon, INPL Nancy

EGU – Vienna, April, 5th 2011

Acknowledgements:

This work has been supported by the French Research National Agency (ANR) through CO2 program (project INTERFACE, n° ANR-08-PCO2-006)
> Introduction
 • Objectives

> Modeling Approach
 • Considered Scenario
 • Modeling tool
 • Geometry and Gridding

> Results – Discussion
 • Illustration Parisian Basin
 • Cement Alteration Mechanisms

> Conclusions
 • Limitations and Perspectives
INTERFACE CO$_2$-Mechanisms - Objectives

> **Modeling** Geochemical interactions due to CO$_2$ injection at the Well-Reservoir-Caprock INTERFACE

- Characterization of reactions pathways
- Identification of new resulting minerals
- Chemical stability of cement-caprock interface
- Consequences in Porosity Evolution of the 3 zones
Injection Well cement alteration due to *acid brine only*
 - CO₂ Injection downhole \Rightarrow Reservoir Brine acidification

Diffusion only of HCO₃⁻ and H⁺ (from CO₂aq), *no flow, no gas phase*
 - Cement degradation due to brine contact
 - Cement leaching due to caprock contact

Code Used: **ToughReact**
 - (finite volumes)

1m*2m-scale *axisymmetric* model
 - 2753 cells
 - $\Delta R = \Delta Z = 2$ mm at the interface
 - $\Delta t = 9$ sec for kinetic convergence reasons
Illustration: Parisian Basin context

Initial state, equilibrated water at \(t=0 \) and at the 2 Limit Conditions border-Cells (\(LC_\infty \))

<table>
<thead>
<tr>
<th>In-Situ Minerals</th>
<th>Formula</th>
<th>Composition (% Vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcite</td>
<td>(\text{CaCO}_3)</td>
<td>Dogger 77.5% Callovo-Oxfordian clays 14.0%</td>
</tr>
<tr>
<td>Dolomite</td>
<td>(\text{CaMg(CO}_3\text{)}_2)</td>
<td>Dogger 10.2% Callovo-Oxfordian clays 11.0%</td>
</tr>
<tr>
<td>Illite-Mg</td>
<td>(K_{0.85}\text{Mg}{0.25}\text{Al}{2.35}\text{Si}{3.4}\text{O}{10}(\text{OH})_2)</td>
<td>Dogger 0.1% Callovo-Oxfordian clays 42.3%</td>
</tr>
<tr>
<td>Quartz</td>
<td>(\text{SiO}_2)</td>
<td>Dogger - Callovo-Oxfordian clays 24.0%</td>
</tr>
<tr>
<td>Mg-Montmorillonite-Na</td>
<td>(\text{Na}{0.33}\text{Mg}{3}\text{Al}{4.33}\text{Si}{3.67}\text{O}_{10}(\text{OH})_2)</td>
<td>Dogger 5.8% Callovo-Oxfordian clays 6.0%</td>
</tr>
<tr>
<td>Siderite</td>
<td>(\text{FeCO}_3)</td>
<td>Dogger 4.1% Callovo-Oxfordian clays -</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>(\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_2)</td>
<td>Dogger 2.0% Callovo-Oxfordian clays -</td>
</tr>
<tr>
<td>Magnesite</td>
<td>(\text{MgCO}_3)</td>
<td>Dogger 0.3% Callovo-Oxfordian clays -</td>
</tr>
<tr>
<td>Pyrite</td>
<td>(\text{FeS}_2)</td>
<td>Dogger - Callovo-Oxfordian clays 1.0%</td>
</tr>
<tr>
<td>Chamosite</td>
<td>(\text{Fe}_5\text{Al}(\text{AlSi}3)\text{O}{10}(\text{OH})_8)</td>
<td>Dogger - Callovo-Oxfordian clays 1.0%</td>
</tr>
<tr>
<td>Celestite</td>
<td>(\text{SrSO}_4)</td>
<td>Dogger - Callovo-Oxfordian clays 0.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class_G Cement</th>
<th>Formula</th>
<th>Composition (% Vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSH_1.6</td>
<td>(\text{Ca}{1.8}\text{SiO}{3.6}:2.58\text{H}_2\text{O})</td>
<td>Dogger 38.1%</td>
</tr>
<tr>
<td>Portlandite</td>
<td>(\text{Ca(OH)}_2)</td>
<td>Dogger 26.1%</td>
</tr>
<tr>
<td>Ettringite</td>
<td>(\text{Ca}_6\text{Al}_2(\text{SO}_4)3(\text{OH}){12}:26\text{H}_2\text{O})</td>
<td>Dogger 13.8%</td>
</tr>
<tr>
<td>Katoite_SI1</td>
<td>(\text{Ca}_3\text{Al}_2\text{SiO}_4(\text{OH})_8)</td>
<td>Dogger 10.5%</td>
</tr>
<tr>
<td>C3FH6</td>
<td>(\text{Ca}_3\text{Fe}2(\text{OH}){12})</td>
<td>Dogger 5.5%</td>
</tr>
<tr>
<td>Hydrotalcite</td>
<td>(\text{Mg}_4\text{Al}_2\text{O}_7:10\text{H}_2\text{O})</td>
<td>Dogger 5.4%</td>
</tr>
<tr>
<td>Calcite</td>
<td>(\text{CaCO}_3)</td>
<td>Dogger 0.6%</td>
</tr>
</tbody>
</table>

180 bar, 75°C, Salt = 25g/kg_w

Initial State

Clayay Cap Rock
\(\Phi = 14.4\% \)
\(\text{pH} = 7 \)

Class G Cement
\(\Phi = 28\% \)
\(\text{pH} = 11 \)

Dogger Reservoir
\(\Phi = 20\% \)
\(\text{pH} = 5 \)

Injection of Supercritical CO\(_2\)
Results: triple point cement alteration

- **Results:**
 - **Volume Fraction:**
 - **Time (d):** 0 to 50
 - **pH:** 4 to 12

- **Chemical Formulations:**
 - **Katoite:** Si_1 Ca_3 Al_2 SiO_4 (OH)_8
 - **Amorphous Silica:** SiO_2·0.5 H_2 O
 - **Ferrihydrite:** Fe(OH)_3
 - **CSH:** Ca_1.6 SiO_3.6·2.58 H_2 O, Ca_1.2 SiO_3.2·2.06 H_2 O, Ca_0.8 SiO_2·1.54 H_2 O
 - **Calcite:** CaCO_3
 - **Portlandite:** Ca(OH)_2
 - **Anhydrite:** CaSO_4
 - **Ettringite:** Ca_6 Al_2 (SO_4)_3 (OH)_{12·26} H_2 O
 - **Hydrotalcite:** Mg_4 Al_2 O_7·10 H_2 O
 - **Magnesite:** MgCO_3
 - **Ferrihydrite:** Fe(OH)_3
 - **C3FH6:** Ca_3 Fe_2 (OH)_{12}

- **Graphical Representation:**
 - **Graph:**
 - **Legend:**
 - Anhydrite
 - Ettringite
 - Boehmite
 - Strætlingite
 - KatoiteSi1
 - Hydrotalcite
 - Magnesite
 - Calcite
 - Portlandite
 - CSH_1.6
 - CSH_1.2
 - CSH_0.8
 - C3FH6
 - Ferrihydrite
 - **Key Points:**
 - **CSH-Decalcification**
 - **Calcite Increase Limited by HCO_3^- Diffusion**
 - **Anhydrite Increase Due to Neighbor Dissolution**
 - **Strætlingite Dissolves and Precipitates into CSH Gel and Boehmite**
 - **Al-Gel (Boehmite) AlO(OH)**

- **Additional Notes:**
 - **Increase Due to Neighbor Dissolution**
 - **Constant Calcite Increase Limited by HCO_3^- Diffusion**
 - **4 mm**
Mechanisms Analysis - pH-Buffering and Volumes

Simplified Reaction pathway:

- H⁺ and HCO₃⁻ Diffusion is the limiting factor for the global cement degradation process
- pH is buffered successively by different mineral phases
- New created phases should occupy more Volume (%), but
- Liberated ions also migrate outside the cement

<table>
<thead>
<tr>
<th>Element</th>
<th>pH</th>
<th>11 (initial)</th>
<th>10.7</th>
<th>10.5</th>
<th>10.4</th>
<th>10.3</th>
<th>10.2</th>
<th>9.7</th>
<th>9</th>
<th>7.7</th>
<th>5.5 (final)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>Portlandite</td>
<td>Calcite (+11.71%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>CSH1.6</td>
<td>CSH1.2 (+2.41%)</td>
<td>CSH0.8 (+2.93%)</td>
<td>Silica_am, hydrated (+13.92%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>C3FH6</td>
<td>Ferrihydrite (+16.19%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Ettringite</td>
<td>(-66%)</td>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>Katoite_Si1</td>
<td>Straetlingite (+93.27%)</td>
<td>Boehmite (+17.51%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>Hydrotalcite</td>
<td>Magnesite (+3.11%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System Evolution after 3 months (Ref Case)

Porosity collapses on cap rock side due to Calcite Precipitation

Calcite precipitation at the cement-clay interface due to Ca2+ migration

Calcite precipitation in the interface-destabilized cement

Portlandite dissolution in the interface-destabilized cement

Calcite CaCO\textsubscript{3}

Caprock

Acidified Reservoir
> **Determination of conceptual reaction pathway**

- Possibility to extract simplified scheme to use it in a Poro-Mechanical study (part of the Project)

> **Sensibility Analysis done on the cement tortuosity**

- Variation of the Damkholer Number (here diffusion/kinetics)

> **Limitations of the model:**

- Cement carbonation produces a lot of H\textsubscript{2}O (not considered in the mass/volume balance)

- Gas phase not considered (some experiments show a stronger effect of wet CO\textsubscript{2} than acidified brine)

- No heterogeneities