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Abstract The influence of noise in strong-motion records is most gnolaltic at low and
high frequencies where the signal to noise ratio is commtmvycompared to that in the
mid-spectrum. The impact of low-frequency noise {Hz) on strong-motion intensity pa-
rameters such as ground velocities, displacements andnesspectral ordinates can be
dramatic and consequentially it has become standard peattdi low-cut (high-pass) fil-
ter strong-motion data with corner frequencies often chdxesed on the shape of Fourier
amplitude spectra and the signal-to-noise ratio. It has lE®wn that response spectral
ordinates should not be used beyond some fraction of coer@d(reciprocal of the cor-
ner frequency) of the low-cut filter. This article examinks effect of high-frequency noise
(> 5Hz) on computed pseudo-absolute response spectral etaie (PSAS). In contrast to
the case of low-frequency noise our analysis shows thatifi¢o remove high-frequency
noise is only necessary in certain situations and that P@Aoften be used up to 100Hz
even if much lower high-cut corner frequencies are requicedmove the noise. This ap-
parent contradiction can be explained by the fact that P3$&®féen controlled by ground
accelerations associated with much lower frequenciestti@natural frequency of the os-
cillator because path and site attenuation (often modélle@ and k, respectively) have

removed the highest frequencies. We demonstrate thathfduig filters are to be used, then
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their corner frequencies should be selected on an indiV/lthgs, as has been done in a few

recent studies.

Keywords strong-motion data ground-motion prediction equationgyround-motion

models- filtering - response spectrastochastic methodk

1 Introduction

In the past decade with the growing interest in displacerbased design and analysis (e.qg.
Fajfar, 1999; Bommer and Elnashai, 1999; Priestley et d7p@nd with near-source dig-
ital recording of a number of large earthquakes (e.g. 1998GBK, many articles have
been published discussing the processing of strong-maticords to obtain reliable ground
displacements and long-period € s) response spectral displacements (SDs) (e.g. Boore,
2001, 2004; Akkar and Bommer, 2006; Jousset and Douglas; Zdblucci et al, 2008;
Rupakhety et al, 2010). In contrast, the processing of aosgtams to obtain reliable short-
period (high-frequency)T( < 0.1s, foc > 10HZz) spectral accelerations has not received
much recent attention. However, the design and analysismotructural elements, equip-
ment and pipework (e.g., in nuclear power plants) requirediptions of earthquake ground
motions up to high frequencies (e.g. US Nuclear Regulatamy@ission, 2007, 2008) and,
consequently, a number of recent ground-motion predictations (GMPES) present co-
efficients to predict pseudo-absolute response spectcalaations (PSAs) up to 100Hz
(e.g. Power et al, 2008).

During the era of analogue accelerographs (e.g. Kinense8MA-1) an active topic
of research was the processing of strong-motion recordsmove the effect of instrument
response, which affects high-frequency measurementsstumminstruments (e.g. Trifunac,
1972). However, correction for instrument response foorgs from these instruments leads
to magnifications of high-frequency noise that then needte tiiltered out since it can dom-
inate the signal (e.g. Converse and Brady, 1992). Time séden digital accelerometers
generally do not require adjustment for instrument respdesause either such instruments
already correct for their own response or the instrumentshabk a high natural frequency
(> 50Hz) that such a correction is deemed not necessary. Refrord such instruments,
however, usually contain high-frequency noise, partityld the analogue-to-digital con-
verter (ADC) has a low (10 or 12bit) resolution or they arealecl at sites affected by am-

bient (cultural), wind or wave sources of noise (Figure )adidition, some strong-motion



stations are affected by mono-harmonic high-frequencgejavhich can be caused by prox-
imity to electrical generators or vibrating machinery (g 2). For these two examples the
high-frequency PSAs are not greatly affected by the noigen ghough it is quite noticeable
in their Fourier amplitude spectra (FAS). However, it is ortant to know when this is the
case; when records need to be high-cut filtered (and how ¢éatstble corner frequencies of
the filters); and when the noise is too great and the data neusgjected. Unfortunately, as
noted above, there is little guidance in the literature omtydrocessing should be applied

and its effect on obtained response spectral accelerations

Records with poor high-frequency signal-to-noise rati@slikely to be those with low
amplitudes, i.e. from small earthquakes and/or long déstanTherefore, it could be argued
that the appropriate processing of such records is of lanitéerest for engineering pur-
poses. However, when deriving GMPEs it is important thatidtasets used are not biased
by only including those records that are of higher than ayemmplitudes, which would
be the case if only records with high signal-to-noise ratiese selected. This is a similar
situation to not accounting for untriggered instrument&whbonducting regression analy-
sis (e.g. Bragato, 2004). Hence, extraction of reliableigdsmotion parameters from noisy
records, even if they come from small earthquakes or lagfames, is necessary.

The aim of this article is to present examples of high-cugfiltg and its effect on PSAs
and give guidance on such filtering, in particular of recdirdsn digital instruments. In
addition, we assess the impact of not applying high-cutrifilgeon noisy records because,
contrary to what would be expected, high-cut filtering is alvtays required or desirable
even for noisy records. The article begins with a brief nevmié previous recent work on this
topic. Following this some examples of the effect on comgpREAs of filtering of records
(both real and simulated) affected by different levels aéagboth real and simulated) from
sites with high and lowk (e.g. Anderson and Hough, 1984) are shown. The article ends
with some guidance on high-frequency filtering. In the failog, since we are interested in
high-frequency PSAs, most spectra start at 5Hz and end aiAQMe highest frequency
generally considered in engineering seismology). All P8éssidered here are for linear

elastic systems and a critical damping ratio of 5%.

[Fig. 1 about here.]

[Fig. 2 about here.]



2 Previous studies

The Basic strong-motion Accelerogram Processing (BAP&oe written by the USGS
(Converse and Brady, 1992) or derivatives are commonly fgsetie routine filtering of ac-
celeration time series. This software includes a routin€ ) for high-cut filtering using
a cosine half-bell taper in the frequency domain [this isli@pipafter the instrument correc-
tion subroutine (INSCOR) for analogue records]. Guidamcthe BAP manual (Converse
and Brady, 1992) on the frequencies to be used for the fiesttion (roll-off and cut-off)
of this filter is limited. The default values are: 50—100 He diggitally-recorded records and
for records that were digitized by the automatic tracesfelhg laser digitizer employed by
the USGS; and 15-20Hz for manually digitized records. H@rev is noted that the ‘50-
to-100Hz transition will be too high for many records . . .dan. . the 15-to-20 Hz transition
will be unnecessarily low for other records. Consequertiig, user should either indicate
the transition band explicitly ... or carefully considerether the default provided by the
software is appropriate’ (Converse and Brady, 1992). Caevand Brady (1992) present
some examples showing the importance of choosing apptediiter transitions for ana-
logue records on which the noise has been magnified by cameorr instrument response.
In this article only records from instruments not requiringtrument correction are consid-
ered and consequently the examples from Converse and Bt&ég) are of little relevance

here.

The recommendations of Converse and Brady (1992) influetiedecision of Am-
braseys et al (2005), when deriving GMPEs based on EuropeiMaldle Eastern data,
to use uniform transitions of 23-25Hz for analogue recofdio(ving instrument correc-
tion) and 50-100Hz for digital records (without instrumentrection) irrespective of the
high-frequency noise. GMPEs were derived by Ambraseys é@5) for peak ground
acceleration (PGA) and spectral accelerations (SAs)fer 0.05s (f < 20Hz); a period
range that was chosen based on the high-cut filters used.igihet filtering applied may
influence the predictions for PGA and SA for periods less hars but, as shown below,
the effect is unlikely to be strong because the generalli kign the active regions pro-
viding the data used by Ambraseys et al (2005) means that ikelittle energy in the
strong-motion data at frequencies above 10Hz. Table 1 pie#iee highest frequencies for
which GMPEs were derived for various models and the reasehsr{ known) why higher

frequencies were not considered [see also Section 5 of Bs{gD03a)]. This table shows



that worries over the accurate recovery of high-frequer@gd$from filtered strong-motion
records influenced the authors’ decisions on the higheguémcy for which to provide
equations. It also shows that considerable interpolate@ween GMPEs for PGA and those
for high-frequency PSAs is often required, which bringshvitituncertainty in deciding on a

frequency to associate with PGA.
[Table 1 about here.]

Boore and Bommer (2005) provide an overview of techniquegpfocessing strong-
motion data. They briefly discuss high-cut filtering but theain focus is on long-period
motions. They show examples (their Figure 6) contrastirgghigh-frequency content of
strong-motion records from sites with a law (with significant high-frequency motions)
and sites with a high (for which any high-frequency motions have been attenubyeithe
travel path). They also discuss the importance of the Nydiegiuency (equal to half the
sampling rate of the data) beyond which motions cannot besumned.

When processing strong-motion data for the Next Generatitanuation (NGA) database
the cut-off frequencies of both low- and high-cut filters eeelected by visual inspection
of each time series and associated FAS (Darragh et al, 200du@t al, 2008). This is un-
usual, as the individual selection of high-cut filters hasgemerally been standard practice
in processing strong-motion data, for even if care is takethé choice of low-cut filters,
uniform high-cut filters are often employed (e.g. Ambraselyal, 2005). After filtering ac-
celeration time series for the NGA database, the PSAs werpeted up to 100Hz even
if the high-cut filter applied had a much lower corner freque(this is in contrast to low-
cut filtering for which a lowest usable frequency was remrté&or example, even some
recent digital records were high-cut filtered with frequeadess than 10Hz (NGA Flatfile
7.3,peer.berkeley.edu/products/nga_flatfiles_dev.html ) but PSAs were used from these
records up to 100Hz by the NGA developers.

High-frequency noise levels on some high-quality strorgiom data recorded on 24 bit
instruments are sufficiently low that high-frequency filigris not required (Figure 3). How-
ever, low noise is uncommon and consequently the level dfigife-frequency noise should
be considered if PGAs and PSAs above 10Hz are of interest —folloe/ing sections dis-
cuss this. Figure 3 demonstrates the danger in applyingdugfilters to records from sta-
tions with lowk values because there is considerable high-frequencyyepeggent, which

would be removed by standard filtering; this issue is disedig®low. For this record there



is little indication of natural attenuation of the groundtioa at frequencies as high as 40 to
50Hz, and therefore the high-cut anti-aliasing filter inith&rument has probably distorted
the true PSA at high frequencies. The Nyquist frequencyhiisrrecord is 65 Hz, but if the
sample rate for this recording had been much higher it isfitteat PSA at high frequencies
would have been different than shown in the figure. On therdthad, Figure 3 shows that
variations in PSA occur at frequencies well above the Nyiduésjuency of 65 Hz. There

is no inconsistency here, for the PSAs at oscillator fregigsnnear 100Hz are being de-
termined by lower frequencies in the input record (in thisezahe lack of high-frequency
motion in the input record is due either to the applied highfdters or the instrumental

anti-aliasing high-cut filter).

[Fig. 3 about here.]

3 Effect of high-frequency noise on PSAs

The example of the noisy record with higlfabout 006 s based on inspection of a linear-log
plot of the Fourier amplitude spectrum, following Andersomd Hough (1984)] presented
on Figure 1 shows that although the noise dominates above ®@ltthe Fourier amplitude
spectrum it does not have an effect on the response spedtruaddition, high-cut filter-
ing does not greatly affect the PSAs. This section invesigahen this behaviour can be
expected.

The effect of high-frequency filtering on PSAs for recordshndifferent noise corner
frequencies {,) is demonstrated by Figure 4. This figure shows the effectitefdi of dif-
ferent f; on PSAs with oscillator frequencie$) less than and greater thdn The PSAs
are for the records shown in Figures 1 and 2, for whighof 22 Hz and 48 Hz are estimated
(see FAS shown in the original figures). Of particular refeeis the relation of.g; and
fc to fn, rather than the absolute values of the frequencies. Forghison we plot the PSA
ratios against the normalized frequenfgy f,. The PSA ratios from both records approach
unity (i.e., the PSAs are unaffected by the filtering) wHegrns greater than about haff,
(corresponding to about 11Hz and 24 Hz for the records shawigures 1 and 2 respec-
tively), but if smallerf; than f, were used PSA would be significantly underestimated, even
for high-frequency oscillators. This is because the aswill response is being controlled by
lower-frequency motions, and filtering at a frequency lésstthe noise corner is clearly

removing signal from the record. This shows the importarfagobusing a standard. for



all records (e.g., 20Hz in Figure 2) but individually chowgif for a given record based on

its FAS.

[Fig. 4 about here.]

3.1 Simulated time series

The previous examples show that the high-frequency enevgtent of the strong-motion
record can have a significant influence on whether high-detifilg will have a significant
impact on the derived PSAs. For close source-to-site distathis energy content is mainly
influenced byk, which is commonly believed to be mainly related to atteimmin the
upper few kilometres of the crust (e.g. Anderson and Houg§B4L To enable a parametric
analysis of the influence of and noise levels on PSAs computed before and after high-
cut filtering we decided to use ground-motion simulationsipoted using the stochastic
method (e.g. Boore, 2003b) with the addition of simulated&o

Ground-motion simulations were conducted using a stohamtdel for western North
America (WNA) with a single-corner-frequency model andrast parametet o of 70bar
andk = 0.04s. Simulated accelerograms were obtained with no addsd and with white
noise added with amplitudes between 1 and 16 gal/&fthese amplitudes were chosen to
give high-frequency noise levels in FAS that are up to a faatd 00 times smaller than the
maximum levels of the FAS). To obtain smooth spectra, thesaeeFourier amplitude and
pseudo-spectral acceleration spectra were computed frany time-domain simulations
for each noise level. In addition, simulations were conedaising the stochastic model of
Atkinson and Boore (2006) for eastern North America (ENA)Hard rock site conditions,
Kk = 0.005s, and a stress parametar of 210bar, which is close to the geometric mean
stress parameter determined for eight relatively welbréed earthquakes in ENA (Boore
et al, 2010).

In addition to noise from ambient (cultural) sources, wimdl &lectronic noise, high-
frequency noise in digital records can also be producechduthie ADC process; this can
be particularly important for instruments with low resadut (10 or 12 bit). This source of
noise has been discussed and its effect on derived strotignrintensity parameters has
been evaluated by Douglas (2003b) and Boore (2003a). De{@G03b) found that if an
accelerogram contains more than about ten acceleratietsléven accurate SAs between
0.2 and 2s could be obtained. Boore (2003a) found that ADC aagiuge apparent changes



in the acceleration baseline leading to low-order polyrarrends that can be seen in ve-
locity and displacement time series derived by integratibis effect is most pronounced
for low-resolution ADC. It is straightforward to simulatieis type of noise since all that is
required is to round the ground acceleration to the acd@eraorresponding to the nearest
bit level (based on the bit range and full-scale amplitudéhefsimulated instrument); but,

because its effect has been discussed previously, we donsider it in this article.

3.2 Effects of noise and filtering on high-frequency respossectra

The simulated data were filtered using causal Butterwortigrsilwith a high-frequency re-
sponse of f¢/ )8, wheref. is the corner frequency. The filter was chosen to approximate
the one most commonly used to process the records in the PEERftfile. Similar re-
sults could be obtained using a cosine half-bell filter siekraployed by BAP (Converse
and Brady, 1992) if its cut- and roll-off frequencies weresbn appropriately to match
the gain of this causal Butterworth filter. Firstly to studhe teffect of uniform cut-offs, as
are often used in practice, corner frequencies of 10, 20 amtz4vere chosen. However,
these corner frequencies do not account for the noise leVaésefore, corner frequencies
equal to the frequency, where a line through the high-frequency noise on a FAS plot
(the flat part of the spectrum) intersects a straight-lin¢ofit a log-log plot) to the decay
of the FAS before reaching the noise floor (below which no &igan be measured) were
also selected (see Figure 5). These corner frequencieslweusimilar to those chosen by
applying the NGA processing procedure mentioned aboves& berner frequencies vary
with the signal-to-noise ratio. For example, for simulati®f aM 6.5 earthquake at 30km
the corner frequency chosen by this approach varies fronz¥6ita noise level of 16 gal to
36 Hz for a noise level of 1gal. The computed FAS for the WNA BNA stochastic models

are shown in Figures 5 and 6, respectively.
[Fig. 5 about here.]
[Fig. 6 about here.]

PSAs were computed from the simulations. To better see fheteff the noise and the
filtering on the PSAs the ratios of the PSAs from the recordk woise (without and with

filtering) to the PSAs from the noise-free records were dated (Figures 7 and 8).

[Fig. 7 about here.]



[Fig. 8 about here.]

High-frequency PSAs can be controlled by frequencies mowfed than the frequency
of the oscillator. For example, PSAs at 100Hz can be coetidly accelerations at 10Hz.
Analysis of the NGA Flatfile shows that PGA is generally lésst2% lower than PSA(100Hz)
(e.g. Idriss, 2007), although for hard-rock sites with veEny ks close to the earthquake
source this may not always be true. The presence of noiseebatthe frequencies control-
ling the PSAs and the frequency of the oscillator may not bgoitant. To summarize this
effect the ratio between the peak high-frequency Fourigulifmde and the Fourier ampli-
tude in the flat portion at high frequencies was computed éotted against the maximum
ratio of the PSAs with noise (unfiltered and filtered) to thésadree PSAs (Figure 9). For
example, for the WNA simulations the ratios between a regegive maximum Fourier
amplitudes and the noise floors are estimated from Figureg51@/4.2 = 4.0 for the 16 gal
simulations), which are plotted against the ratio of PSAhwind without noise obtained
from Figure 7 (e.g. about.A for the 16 gal simulations). Figure 9 allows an estimategto b
made of when noise levels start to swamp the signal and therfedct PSAs. Note that this
figure is for general guidance only and its intention is noptovide exact values of the

expected error.
[Fig. 9 about here.]

Figure 9 includes results from both the WNA and ENA simulasioln addition, as
a check of the generality of the result, points from a simattestudy in which the “true”
ground motion was taken to be a filtered version of an acteakdewith very different mag-
nitude and distance than assumed for the simulated recadbisplayed. The use of ratios
of the maximum Fourier amplitudes and the noise floor and @ties of PSAs with and
without noiseindependent of frequency (i.e. not the ratios at specific frequenciedlices
the influence of the shape of the FAS, which explains the aiityl in the results for the
WNA and ENA simulations for which the peak ratios occur at mddferent frequencies,
mainly due to differingks. Although not identical, the results from the various datians
are in general agreement and provide an estimate of theierhigh-frequency PSA com-
puted from records in which no high-cut filters have beeniadpFor example, the ratio of
maximum to noise-floor FAS in Figures 1 and 2 are about 10 afdigdoring the spikes
at 50Hz and 78Hz), respectively, from which we estimate figigure 9 that the error in

the PSA for the unfiltered records would be 15% and less than&$pectively. In addition,
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Figure 1 indicates that the effect of filtering is, as desitededuce significantly the influ-
ence of the noise, with reliable estimates of PSA at osoilllequencies much above the

high-cut filter corner frequencies.

3.3 Effect of mono-harmonic noise on PSAs

The accelerogram shown in Figure 2 is used as an exampleréastries affected by high-
frequency mono-harmonic noise, which could be expectednfstruments located close
to vibrating machinery, for example. Accurate PSAs closéhofrequency of the mono-
harmonic noise can be obtained after a applying a notch @epyfilter even though, for

this time series, this noise is not significantly affectihg ttomputed PSAs (Figure 10).
Notch filters are more appropriate in this case than starfigtdcut filters, which do not

fully remove the noise at 50Hz and, in addition, affect PSAseaghbouring frequencies
(Figure 10).

[Fig. 10 about here.]

4 Conclusions

In this brief article we have investigated the need for fiftgrto remove high-frequency
noise in strong-motion records based on some example acgedens and a series of sim-
ulations. In contrast to low-cut filtering, for which only St periods lower than some
proportion (03—0.9 depending on site class, instrument type and tolerentaion) of the
cut-off period are reliable (Akkar and Bommer, 2006), in maituations accurate high-
frequency PSAs up to 100Hz can be obtained even in the preséiigh noise levels with
or without filtering to remove this noise. A useful paramdtedetermining the probable
error in high-frequency PSAs from acceleration time seni#s no high-cut filtering is the
ratio of the FAS near the peak portion of the spectrum to that the noise floor (assuming
a white-noise model); if this ratio is greater than ten, dotuation study shows that the
error in PSA will be less than about 15% even without filteritigelative noise levels are
high, it is important that high-cut corner frequencies dresen individually, based on where
the Fourier amplitude spectrum of the signal meets the rilsise The use of uniform filter

corner frequencies (e.g. 25Hz) can lead to incorrect PSAghtfrequencies. Even though
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mono-harmonic noise is prominent as spikes on FAS of somelerograms its impact on

PSAs is limited and it can be reduced further by the appbicatif notch (bandstop) filters.
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of high-cut filtering to reduce that noise. The record is thegitudinal com-
ponent from the station at the Sultartanga-Hydroelectowd? Plant of the
Icelandic Strong-Motion Network of the 17th June 2000 6.5) South Ice-
land earthquake. Joyner-Boore distange= 39km. See caption of Figure 1
for details of the subplots; the first36s was used for the noise sample.
Although the equivalence of high-frequency PSA and PGA cxatia fre-
qguency less than 100 Hz, the PSA is plotted to 200 Hz for ctersiy with
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Fig. 1 Example of strong-motion record featuring significant hfgfguency noise (above 22Hz) and the
effect on PSA of applying various high-cut filters. The retd the NS component from the Oseyrarbru
station of the Icelandic Strong-Motion Network of the 17timé 20001y, 3.9) Hengill earthquake. Epicentral
distancerep = 20km. a) uncorrected acceleration time series; b) Founwgglitude spectra (FAS) of signal
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capture the high-frequency equivalence of PSA and PGA).
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Fig. 2 Example of strong-motion record featuring quasi mono-twamicnoise at 50Hz, with a broader and
more subdued noise source near 78Hz and the effect on PSAlyfrapvarious high-cut filters. The quasi
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been added at 50 Hz on the PSA graph to focus on the influenbe 6DtHz noise on the response spectrum
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Fig. 3 Example of strong-motion record with an excellent sigmafise ratio and the effect on PSA of
applying various high-cut filters. The record is the EW comgtt from the PYLS (Luz-Saint-Sauveur) hard-
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Fig. 5 Average FAS for 500 noise-added simulations, without artth Wwigh-cut filtering (solid and dashed
lines, respectively) at the filter corner frequencies iatéd by the short vertical lines. The corner frequencies
were determined by the intersection of subjectively chdises fit to the high-frequency and sloping portions
of the FAS, as shown for noise of 4gals (these frequenciedemetedf, elsewhere in this paper, so in this
figure fc = fn). Also shown is the FAS for a 40 Hz filter for 16 gals noise.
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Fig. 6 Average FAS spectra for 100 unfiltered noise-added sinauiatfor ENA. Note the difference in the
frequency axis compared to the previous figure for WNA, thffeence is a result of the much lowaer,
which results in the peak of the PSA being at higher frequenttian for the WNA simulations.
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Fig. 8 Ratios of average response spectra spectra from 100 wediltaise-added and noise-free ENA sim-
ulations. The Nyquist frequency of these simulations ist390Note the difference in the frequency axis

compared to that used in the corresponding figure for the WiNAilations. The simulations for each noise

level used the same random-number seed, and thereforede adise only changed amplitude, not spectral
content; this may explain the similarity of the small fludtaas in PSA with oscillator frequency over the

suite of PSAs.
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Event: M 4.5, R=100 km (2008-10-14, 02:16:58, NOAA, Greece)

SMSIM, M 5.5, R=30 km, WNA, Ac = 70 bars, rock, k¥ = 0.04, no filter
SMSIM, M 6.5, R=30 km, WNA, AG = 70 bars, rock, k¥ = 0.04, no filter
SMSIM, M 6.5, R=30 km, ENA, Ac = 210 bars, rock, ¥ = 0.005, no filter
SMSIM, M 6.5, R=30 km, ENA, Ac = 414 bars, rock, ¥ = 0.005, no filter
SMSIM, M 7.5, R=30 km, WNA, Ac = 70 bars, rock, ¥ = 0.04, no filter
SMSIM, M 6.5, R=30 km, WNA, Ac = 70 bars, rock, ¥ = 0.04, high-cut filter
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Fig. 10 Fourier spectra and PSAs for the accelerogram shown in &@uwithout filtering and with a 40Hz
high-cut filter and a 50 Hz narrow-band rejection (notchgfi(the vertical gray line at 50 Hz in the right-hand
graph is drawn at the corner frequency of the notch filter).
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1  The highest frequencies$q) (lowest periodsT) for which various authors
presented GMPEs for the prediction of PSA (or SA) and theisoaing (if
known). Note that the processing information given in thee&Bon” col-
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Table 1 The highest frequenciedd:) (lowest periodsT) for which various authors presented GMPEs for
the prediction of PSA (or SA) and their reasoning (if knowNpte that the processing information given
in the “Reason” column does not imply that the authors of théRE& did the processing; in fact, most of
the GMPEs used data processed by others. Only GMPEs by Zhalo(2006) and Boore and Atkinson

(2008) in this list were derived using a large number recémis digital instruments (the other GMPEs are
overwhelmingly based on records from analogue instruments

Reference fosc T Reason
(Hz) (s)

Johnson (1973) 18 0.055 Not known

Trifunac (1978) 25 0.04 Records instrument corrected agh-but filtered at
25Hz.

Joyner and Boore (1982) 10 0.1 Inaccurate instrument d@reabove 10 Hz (Joyner
and Boore, 1988)

Ambraseys et al (1996) 10 0.1 Records high-cut filtered at25H

Sabetta and Pugliese (1996) 25 0.04 Records instrumengctedr and high-cut filtered
with cut-offs between 20 and 35Hz (most about
25Hz).

Abrahamson and Silva (1997) 100 0.01 Records instrumenmeaed and high-cut filtered
with individually chosen cut-offsf,. PSAs only used
up to Q8fy hence less than 100 records used at
100Hz. They assume that PSA(100Hz) equals PGA.

Campbell (1997) 20 0.05 Records high-cut filtered at 25Hz.
Sadigh et al (1997) 20 0.05 Not known
Zhao et al (2006) 20 0.05 Records instrument corrected agh-dt filtered

with cut-offs of either 26Hz (50 samples-per-
second data) or 33Hz (100 samples-per-second data).

Danciu and Tselentis (2007) 10 0.1 Records high-cut filtete2b Hz.

Boore and Atkinson (2008) 100 0.01 See text. The other NGAaisodlso present equa-
tions up to 100Hz

Bindi et al (2010) 33 0.03 Records instrument corrected aigth-tut filtered
with cut-offs between roughly 20 (analogue data) and
30Hz (digital data).




