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Abstract Over the past four or five decades many advances have been made in earth-
quake ground-motion prediction and a variety of procedures have been proposed. Some
of these procedures are based on explicit physical models of the earthquake source,
travel-path and recording site while others lack a strong physical basis and seek only
to replicate observations. In addition, there are a number of hybrid methods that seek
to combine benefits of different approaches. The various techniques proposed have their
adherents and some of them are extensively used to estimate ground motions for engi-
neering design purposes and in seismic hazard research. These methods all have their

own advantages and limitations that are not often discussed by their proponents.

The purposes of this article are to: summarise existing methods and the most
important references, provide a family tree showing the connections between different
methods and, most importantly, to discuss the advantages and disadvantages of each

method.
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1 Introduction

The accurate estimation of the characteristics of the ground shaking that occurs during
damaging earthquakes is vital for efficient risk mitigation in terms of land-use planning
and the engineering design of structures to adequately withstand these motions. This
article has been provoked by a vast, and rapidly growing, literature on the development
of various methods for ground-motion prediction. In total, this article surveys roughly
two dozen methods proposed in the literature. Only about half are commonly in use
today. Some techniques are still in development and others have never been widely
used due to their limitations or lack of available tools, constraints on input parameters
or data for their application.

Earthquake ground-motion estimation that transforms event parameters, e.g. mag-
nitude and source location, to site parameters, either time-histories of ground motions
or strong-motion parameters (e.g. peak ground acceleration, PGA, or response spectral
displacement) is a vital component within seismic hazard assessment be it probabilistic
or deterministic (scenario-based). Ground-motion characteristics of interest depend on
the structure or effects being considered (e.g. McGuire 2004). At present, there are a
number of methods being used within research and engineering practice for ground-
motion estimation; however, it is difficult to understand how these different procedures
relate to each another and to appreciate their strengths and weaknesses. Hence, the
choice of which technique to use for a given task is not easy to make. The purpose of

this article is to summarise the links between the different methods currently in use
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today and to discuss their advantages and disadvantages. The details of the methods
will not be discussed here; these can be found within the articles cited. Only a brief
description, list of required input parameters and possible outputs are given. The au-
dience of this article includes students and researchers in engineering seismology but
also seismic hazard analysts responsible for providing estimates for engineering projects
and earthquake engineers seeking to understand limits on the predictions provided by
hazard analyses. Numerous reviews of ground-motion simulation techniques have been
published (e.g. Aki 1982; Shinozuka 1988; Anderson 1991; Erdik and Durukal 2003)
but these have had different aims and scopes to this survey.

Only methods that can be used to estimate ground motions of engineering signifi-
cance are examined here, i.e. those motions from earthquakes with moment magnitude
M.y, greater than 5 at source-to-site distances less than 100 km for periods between 0 to
4s (but extending to permanent displacements for some special studies). In addition,
focus is given to the estimation of ground motions at flat rock sites since it is common
to separate the hazard at the bedrock from the estimation of site response (e.g. Dowrick
1977) and because site response modelling is, itself, a vast topic (e.g. Heuze et al 2004).
Laboratory models, including foam models (e.g. Archuleta and Brune 1975), are not
included because it is difficult to scale up to provide engineering predictions from such
experiments.

Section 2 summarises the different procedures that have been proposed within
a series of one-page tables (owing to the vast literature in this domain, only brief
details can be given) and through a diagram showing the links between the methods.
The problem of defining an earthquake scenario is discussed in Section 3. Section 4 is
concerned with the testing of methods using observations. The article concludes with

a discussion of how to select the most appropriate procedure for a given task.
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2 Summaries of different procedures

As described by Olafsson et al (2001) there are basically two approaches to the con-
struction of models for the prediction of earthquake ground motions: the mathematical
approach, where a model is analytically based on physical principles, and the experi-
mental one, where a mathematical model, which is not necessarily based on physical
insight, is fitted to experimental data. In addition, there are hybrid approaches com-
bining elements of both philosophies. Earthquakes are so complex that physical insight
alone is currently not sufficient to obtain a reasonable model. Olafsson et al (2001)
term those models that only rely on measured data ‘black-box’ models.

Figure 1 summarises the links between the different methods described in Tables 1
to 22. Each table briefly: 1) describes the method; 2) lists the required input parameters
(bold for those parameters that are invariably used, italic for parameters that are
occasionally considered and normal font for those parameters that are often implicitly,
but not often explicitly, considered) and the outputs that can be reliably obtained; 3)
lists a maximum of a dozen key references (preference is given to: the original source
of the method, journal articles that significantly developed the approach and review
articles) including studies that test the approach against observations; 4) lists the
tools that are easily available to apply approach (public domain programs with good
documentation help encourage uptake of a methodl); 5) gives the rough level of use
of the technique in practice and in research; and finally 6) summarises the advantages
and disadvantages/limitations of the method. The following sections introduce each of

the four main types of methods.

1 Some of the programs for ground-motion prediction are avail-
able for download from the ORFEUS Seismological Software Library

(http://www.orfeus-eu.org/Software/softwarelib.html).



Fig. 1 Summary of the approximate date when a method was developed on the x-axis, links to other approaches and the level of detail of the scenario

modelled on the y-axis. Boxes indicate those methods that are often used in research and/or practice.
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2.1 Empirical methods

The three methods described in this section are closely based on strong ground motion
observations. Such empirical techniques are the most straightforward way to predict
ground motions in future earthquakes and they are based on the assumption that
shaking in future earthquakes will be similar to that observed in previous events. The
development of these methods roughly coincided with the recording of the first strong-
motion records in the 1930s but they continue to be improved. Empirical methods
remain the most popular procedure for ground-motion prediction, especially in engi-

neering practice. Tables 1 to 3 summarise the three main types of empirical methods.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

2.2 Black-box methods

This section describes four methods (Tables 4 to 7) that can be classified as black-box
approaches because they do not seek to accurately model the underlying physics of
earthquake ground motion but simply to replicate certain characteristics of strong-
motion records. They are generally characterised by simple formulations with a few
input parameters that modify white noise so that it more closely matches earthquake
shaking. These methods were generally developed in the 1960s and 1970s for engineer-
ing purposes to fill gaps in the small observational datasets then available. With the
great increase in the quantity and quality of strong-motion data and the development

of powerful techniques for physics-based ground-motion simulation, this family of pre-
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diction techniques has become less important although some of the procedures are still

used in engineering practice.
[Table 4 about here.]
[Table 5 about here.]
[Table 6 about here.]

[Table 7 about here.]

2.3 Physics-based methods

Although this class of methods was simply called the ‘mathematical approach’ by
Olafsson et al (2001), the recent advances in the physical comprehension of the dynamic
phenomena of earthquakes and in the simulation technology means that we prefer the
name ‘physics-based methods’. These techniques often consist of two stages: simulation
of the generation of seismic waves (through fault rupture) and simulation of wave
propagation. Due to this separation it is possible to couple the same source model with
differing wave propagation approaches or different source models with the same wave
propagation code (e.g. Aochi and Douglas 2006). In this survey emphasis is placed on
wave propagation techniques.

Source models that have been used extensively for ground-motion prediction include
theoretical works by: Haskell (1969), Brune (1970, 1971), Papageorgiou and Aki (1983),
Gusev (1983), Joyner (1984), Zeng et al (1994) and Herrero and Bernard (1994). Such
insights are introduced into prescribed earthquake scenarios, called ‘kinematic’ source
models. It is well known that the near-source ground motion is significantly affected by

source parameters, such as the point of nucleation on the fault (hypocentre), rupture
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velocity, slip distribution over the fault and the shape of the slip function (e.g. Miyake
et al 2003; Mai and Beroza 2003; Tinti et al 2005; Ruiz et al 2007). This aspect is
difficult to take into account in empirical methods. Recently it has become possible to
introduce a complex source history numerically simulated by pseudo- or fully-dynamic
modelling (e.g. Guatteri et al 2003, 2004; Aochi and Douglas 2006; Ripperger et al 2008)
into the prediction procedure. Such dynamic simulations including complex source
processes have been shown to successfully simulate previous large earthquakes, such as
the 1992 Landers event (e.g. Olsen et al 1997; Aochi and Fukuyama 2002). This is an

interesting and on-going research topic but we do not review them in this article.

All of the physics-based deterministic methods convolve the source function with
synthetic Green’s functions (the Earth’s response to a point-source double couple) to
produce the motion at ground surface. Erdik and Durukal (2003) provide a detailed
review of the physics behind ground-motion modelling and show examples of ground
motions simulated using different methods. Tables 8 to 18 summarise the main types
of physics-based procedures classified based on the method used to calculate the syn-
thetic seismograms in the elastic medium for a given earthquake source. Most of these
are based on theoretical concepts introduced in the 1970s and 1980s and intensively
developed in the past decade when significant improvements in the understanding
of earthquake sources and wave propagation (helped by the recording of near-source
ground motions) were coupled with improvements in computer technology to develop
powerful computational capabilities. Some of these methods are extensively used for
research purposes and for engineering projects of high-importance although most of

them are rarely used in general engineering practice due to their cost and complexity.

[Table 8 about here.]
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[Table 9 about here.]

[Table 10 about here.]

[Table 11 about here.]

[Table 12 about here.]

[Table 13 about here.]

[Table 14 about here.]

[Table 15 about here.]

[Table 16 about here.]

[Table 17 about here.]

[Table 18 about here.]

2.4 Hybrid methods

To benefit from the advantages of two (or more) different approaches and to overcome
some of their disadvantages a number of hybrid methods have been proposed. These
are summarised in Tables 19 to 22. These techniques were developed later than the
other three families of procedures, which are the bases of these methods. Since their de-
velopment, mainly in the 1980s and 1990s, they have been increasingly used, especially
for research purposes. Their uptake in engineering practice has been limited until now,
although they seem to be gaining in popularity due to the engineering requirement for

broadband time-histories, e.g. for soil-structure interaction analyses.

[Table 19 about here.]
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[Table 20 about here.]

[Table 21 about here.]

[Table 22 about here.]

3 Earthquake scenario

Before predicting the earthquake ground motions that could occur at a site it is nec-
essary to define an earthquake scenario or scenarios, i.e. earthquake(s) that need(s)
to be considered in the design (or risk assessment) process for the site. The methods
proposed in the literature to define these scenarios (e.g. Dowrick 1977; Hays 1980; Re-
iter 1990; Anderson 1997a; Bazzurro and Cornell 1999; Bommer et al 2000) are not
discussed here. In this section the focus is on the level of detail required to define a
scenario for different ground-motion prediction techniques, which have varying degrees
of freedom. In general, physics-based (generally complex) methods require more pa-
rameters to be defined than empirical (generally simple) techniques. As the number
of degrees of freedom increases sophisticated prediction techniques can model more
specific earthquake scenarios, but it becomes difficult to constrain the input parame-
ters. The various methods consider different aspects of the ground-motion generation
process to be important and set (either explicitly or implicitly) different parameters
to default values. However, even for methods where a characteristic can be varied it is
often set to a standard value due to a lack of knowledge. In fact, when there is a lack
of knowledge (epistemic uncertainty) the input parameters should be varied within a
physically-realistic range rather than fixed to default values. Care must be taken to

make sure that parameters defining a scenario are internally consistent. For example,
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asperity size and asperity slip contrast of earthquake ruptures are generally inversely
correlated (e.g. Bommer et al 2004).

The basic parameters required to define a scenario for almost all methods are mag-
nitude and source-to-site distance (note that, as stated in Section 1, hazard is generally
initially computed for a rock site and hence site effects are not considered here). In
addition, other gross source characteristics, such as the style-of-faulting mechanism,
are increasingly being considered. An often implicit general input variable for simple
techniques is ‘seismotectonic regime’, which is explicitly accounted for in more com-
plex approaches through source and path modelling. In this article, we assume that
kinematic source models (where the rupture process is a fixed input) are used for
ground-motion simulations. Dynamic source modelling (where the rupture process is
simulated by considering stress conditions) is a step up in complexity from kinematic
models and it remains mainly a research topic that is very rarely used for generating
time-histories for engineering design purposes. Dynamic rupture simulations have the
advantage over kinematic source models in proposing various possible rupture scenar-
ios of different magnitudes for a given seismotectonic situation (e.g. Anderson et al
2003; Aochi et al 2006). However, it is still difficult to tune the model parameters for
practical engineering purposes (e.g. Aochi and Douglas 2006) (see Section 2.3 for a
discussion of dynamic source models).

Many factors (often divided into source, path and site effects) have been observed
to influence earthquake ground motions, e.g.: earthquake magnitude (or in some ap-
proaches epicentral macroseismic intensity), faulting mechanism, source depth, fault
geometry, stress drop and direction of rupture (directivity); source-to-site distance,
crustal structure, geology along wave paths, radiation pattern and directionality; and

site geology, topography, soil-structure interaction and nonlinear soil behaviour. The
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combination of these different, often inter-related, effects leads to dispersion in ground
motions. The varying detail of the scenarios (i.e. not accounting for some factors while
modelling others) used for the different techniques consequently leads to dispersion
in the predictions. The unmodelled effects, which can be important, are ignored and
consequently predictions from some simple techniques (e.g. empirical ground-motion
models) contain a bias due to the (unknown) distribution of records used to construct
the model with respect to these variables (e.g. Douglas 2007). There is more explicit
control in simulation-based procedures. Concerning empirical ground-motion models
McGuire (2004) says that ‘only variables that are known and can be specified before
an earthquake should be included in the predictive equation. Using what are actually
random properties of an earthquake source (properties that might be known after an
earthquake) in the ground motion estimation artificially reduces the apparent scat-
ter, requires more complex analysis, and may introduce errors because of the added

complexity.’

In empirical methods the associated parameters that cannot yet be estimated be-
fore the earthquake, e.g. stress drop and details of the fault rupture, are, since observed
ground motions are used, by definition, within the range of possibilities. Varying num-
bers of these parameters need to be chosen when using simulation techniques, which
can be difficult. On the other hand, only a limited and unknown subset of these param-
eters are sampled by empirical methods since not all possible earthquakes have been
recorded. In addition, due to the limited number of strong-motion records from a given
region possible regional dependence of these parameters cannot usually be accounted
for by empirical procedures since records from a variety of areas are combined in order

to obtain a sufficiently large dataset.
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Various prediction methods account for possible regional dependence (e.g. Douglas
2007) in different ways. Methods based on observed ground motions implicitly hope
that the strong-motion records capture the complete regional dependence and that the
range of possible motions is not underestimated. However, due to limited databanks
it is not often possible to only use records from small regions of interest; data from
other areas usually need to be imported. Physics-based methods explicitly model re-
gional dependence through the choice of input parameters, some of which, e.g. crustal
structure, can be estimated from geological information or velocimetric (weak-motion)
data, while others, e.g. stress parameters, can only be confidently estimated based
on observed strong-motion data from the region. If not available for a specific region
parameters must be imported from other regions or a range of possible values assumed.

Although this article does not discuss site effects nor their modelling, it is important
that the choice of which technique to use for a task is made considering the potential
use of the ground-motion predictions on rock for input to a site response analysis. For
example, predictions from empirical methods are for rock sites whose characteristics
(e.g. velocity and density profiles and near-surface attenuation) are limited by the ob-
servational database available and therefore the definition of rock cannot, usually, be
explicitly defined by the user; however, approximate adjustments to unify predictions
at different rock sites can be made (e.g. Cotton et al 2006). In addition, the character-
istics of the rock sites within observational databases are generally poorly known (e.g.
Cotton et al 2006) and therefore the rock associated with the prediction is ill-defined.
In contrast, physics-based techniques generally allow the user to explicitly define the
characteristics of the rock site and therefore more control is available. The numerical
resolution of each method puts limits on the velocities and thicknesses of the suffi-

ciently layers that can be treated. Black-box approaches generally neglect site effects
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and, when they do, the parameters for controlling the type of site to use are, as in

empirical techniques, constrained based on (limited) observational databases.

4 Testing of methods

Predicted ground motions should be compared to observations for the considered site,
in terms of amplitude, frequency content, duration, energy content and more difficult
to characterise aspects, such as the ‘look’ of the time-histories. This verification of the
predictions is required so that the ground-motion estimates can be used with confi-
dence in engineering and risk analyses. Such comparisons take the form of either point
comparisons for past earthquakes (e.g. Aochi and Madariaga 2003), visually checking
a handful of predictions and observations in a non-systematic way, or more general
routine validation exercises, where hundreds of predictions and observations are statis-
tically compared to confirm that the predictions are not significantly biased and do not
display too great a scatter (a perfect fit between predictions and observations is not
expected, or generally possible, when making such general comparisons) (e.g. Atkinson
and Somerville 1994; Silva et al 1999; Douglas et al 2004). In a general comparison it
is also useful to check the correlation coefficients between various strong-motion pa-
rameters (e.g. PGA and relative significant duration, RSD) to verify that they match
the correlations commonly observed (Aochi and Douglas 2006).

For those techniques that are based on matching a set of strong-motion intensity
parameters, such as the elastic response spectral ordinates, it is important that the
fit to non-matched parameters is used to verify that they are physically realistic, i.e.
to check the internal consistency of the approach. For example, black-box techniques

that generate time-histories to match a target elastic response spectrum can lead to
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time-histories with unrealistic displacement demand and energy content (Naeim and
Lew 1995).

A potentially useful approach, although one that is rarely employed, is to use a
construction set of data to calibrate a method and then an independent validation set
of data to test the predictions. Using such a two-stage procedure will demonstrate that
any free parameters tuned during the first step do not need further modifications for
other situations. Such a demonstration is important when there is a trade-off between
parameters whereby various choices can lead to similar predicted ground motions for
a given scenario.

One problem faced by all validation analysis is access to all the required independent
parameters, such as local site conditions, in order that the comparisons are fair. If a
full set of independent variables is not available then assumptions need to be made,
which can lead to uncertainty in the comparisons. For example, Boore (2001), when
comparing observations from the Chi-Chi earthquake to shaking predicted by various
empirical ground-motion models, had to make assumptions on site classes due to poor
site information for Taiwanese stations. These assumptions led to a lack of precision
in the level of over-prediction of the ground motions.

Until recently most comparisons between observations and predictions were visual
or based on simple measures of goodness-of-fit, such as: the mean bias and the overall
standard deviation sometimes computed using a maximum-likelihood approach (Spu-
dich et al 1999). Scherbaum et al (2004) develop a statistical technique for ranking
various empirical ground-motion models by their ability to predict a set of observed
ground motions. Such a method could be modified for use with other types of pre-
dictions. However, the technique of Scherbaum et al (2004) relies on estimates of the

scatter in observed motions, which are difficult to assess for techniques based on ground-
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motion simulation, and the criteria used to rank the models would probably require
modification if applied to other prediction techniques. Assessment of the uncertainty
in simulations requires considering all sources of dispersion: modelling (differences be-
tween the actual physical process and the simulation), random (detailed aspects of the
source and wave propagation that cannot be modelled deterministically at present)
and parametric (uncertainty in source parameters for future earthquakes) (Abraham-
son et al 1990). The approach developed by Abrahamson et al (1990) to split total
uncertainty into these different components means that the relative importance of dif-
ferent source parameters can be assessed and hence aids in the physical interpretation
of ground-motion uncertainty.

In addition to this consideration of different types of uncertainty, work has been
undertaken to consider the ability of a simulation technique to provide adequate pre-
dictions not just for a single strong-motion intensity parameter but many. Anderson
(2004) proposes a quantitative measure of the goodness-of-fit between synthetic and
observed accelerograms using ten different criteria that measure various aspects of the
motions, for numerous frequency bands. This approach could be optimized to require
less computation by adopting a series of strong-motion parameters that are poorly
correlated (orthogonal), and hence measure different aspects of ground motions, e.g.
amplitude characterised by PGA and duration characterised by RSD. A goodness-of-fit
approach based on the time-frequency representation of seismograms, as opposed to
strong-motion intensity parameters as in the method of Anderson (2004), is proposed
by Kristekové et al (2006) to compare ground motions simulated using different com-
puter codes and techniques. Since it has only recently been introduced this procedure
has yet to become common but it has the promise to be a useful objective strategy for

the validation of simulation techniques by comparing predicted and observed motions
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and also by internal comparisons between methods. Some comprehensive comparisons
of the results from numerical simulations have been made in the framework of recent
research projects and workshops (e.g. Day et al 2005; Chaljub et al 2007b)

If what is required from a method is a set of ground motions that include the
possible variability in shaking at a site from a given event then it is important to
use a method that introduces some randomness into the process (e.g. Pousse et al
2006) to account for random and parametric uncertainties. For example, results from
physically-based simulation techniques will not reproduce the full range of possible
motions unless a stochastic element is introduced into the prediction, through the
source or path. However, if what is required from a technique is the ability to give
the closest prediction to an observation then this stochastic element is not necessarily

required.

5 Synthesis and conclusions

Dowrick (1977) notes that ‘[a]s with other aspects of design the degree of detail entered
into selecting dynamic input [i.e. ground-motion estimates] will depend on the size
and vulnerability of the project’. This is commonly applied in practice where simple
methods (GMPEs, representative accelerograms or black-box methods) are applied for
lower importance and less complex projects whereas physics-based techniques are used
for high importance and complex situations (although invariably in combination with
simpler methods). Methods providing time-histories are necessary for studies requiring
non-linear engineering analyses, which are becoming increasingly common. Dowrick
(1977) believes that ‘because there are still so many imponderables in this topic only

the simpler methods will be warranted in most cases’. However, due to the significant
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improvements in techniques, knowledge, experience and computing power this view
from the 1970s is now less valid. Simple empirical ground-motion estimates have the
advantage of being more defensible and are more easily accepted by decision makers
due to their close connection to observations. Simulations are particularly important in
regions with limited (or non-existent) observational databanks and also for site-specific
studies, where the importance of different assumptions on the input parameters can
be studied. However, reliable simulations require good knowledge of the propagation
media and they are often computationally expensive.

One area where physics-based forward modelling breaks down is in the simulation
of high-frequency ground motions where the lack of detail in source (e.g. heterogeneities
of the rupture process) and path (e.g. scattering) models means high frequencies are
poorly predicted. Hanks and McGuire (1981) state that ‘[e]vidently, a realistic charac-
terization of high-frequency strong ground motion will require one or more stochastic
parameters that can account for phase incoherence.” In contrast, Aki (2003) believes
that ‘[a]ll these new results suggest that we may not need to consider frequencies higher
than about 10 Hz in Strong Motion Seismology. Thus, it may be a viable goal for strong
motion seismologists to use entirely deterministic modeling, at least for path and site
effects, before the end of the 21st century.’

The associated uncertainties within ground-motion prediction remain high despite
many decades of research and increasingly sophisticated techniques. The unchanging
level of aleatory uncertainties within empirical ground-motion estimation equations
over the past thirty years are an obvious example of this (e.g. Douglas 2003). However,
estimates from simulation methods are similarly affected by large (and often unknown)
uncertainties. These large uncertainties oblige earthquake engineers to design structures

with large factors of safety that may not be required.
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The selection of the optimum method for ground-motion estimation depends on
what data is available for assessing the earthquake scenario, resources available and
experience of the group. Currently the choice of method used for a particular study is
generally controlled by the experience and preferences of the worker and the tools and
software available to them rather than it being necessarily selected based on what is
most appropriate for the project.

There are still a number of questions concerning ground-motion prediction that
need to be answered. These include the following: possible regional dependence of
ground motions (e.g. Douglas 2007), the effect of rupture complexity on near-source
ground motion (e.g. Aochi and Madariaga 2003), the spatial variability of shaking (e.g.
Goda and Hong 2008) and the determination of upper bounds on ground motions (e.g.
Strasser et al 2008). All these questions are difficult to answer at present due to the
lack of near-source strong-motion data from large earthquakes in many regions (little
near-source data exists outside the western USA, Japan and Taiwan). Therefore, there
is a requirement to install, keep operational and improve, e.g. in terms of spatial density
(Trifunac 2007), strong-motion networks in various parts of the world. In addition, the
co-location of accelerometers and high-sample-rate instruments using global navigation
satellite systems (e.g. the Global Positioning System, GPS) could help improve the
prediction of long-period ground motions (e.g. Wang et al 2007).

In addition to the general questions mentioned above, more specific questions re-
lated to ground-motion prediction can be posed, such as: what is the most appropriate
method to use for varying quality and quantity of input data and for different seismo-
tectonic environments? how can the best use be made of the available data? how can
the uncertainties associated with a given method be properly accounted for? how can

the duration of shaking be correctly modelled? These types of questions are rarely ex-
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plicitly investigated in articles addressing ground-motion prediction. In addition, more
detailed quantitative comparisons of simulations from different methods for the same

scenario should be conducted through benchmarks.

Over time the preferred techniques will tend to move to the top of Figure 1 (more
physically based approaches requiring greater numbers of input parameters) (e.g. Field
et al 2003) since knowledge of faults, travel paths and sites will become sufficient to
constrain input parameters. Such predictions will be site-specific as opposed to the
generic estimations commonly used at present. Due to the relatively high cost and
difficulty of ground investigations, detailed knowledge of the ground subsurface are
likely to continue to be insufficient for fully numerical simulations for high-frequency
ground motions, which require data on 3D velocity variations at a scale of tens of
metres. In the distant future when vast observational strong-motion databanks exist
including records from many well-studied sites and earthquakes, more sophisticated
versions of the simplest empirical technique, that of representative accelerograms, could
be used where selections are made not just using a handful of scenario parameters but
many, in order to select ground motions from scenarios close to that expected for a

study area.
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