M. Bouchon, C. A. Schultz, and M. N. Töksoz, Effect of three-dimensional topography on seismic motion, Journal of Geophysical Research: Solid Earth, vol.79, issue.B3, pp.5835-5846, 1996.
DOI : 10.1029/95JB02629

S. J. Lee, D. Komatitsch, B. S. Huang, and J. Tromp, Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan, Bulletin of the Seismological Society of America, vol.99, issue.1, pp.314-325, 2009.
DOI : 10.1785/0120080020

URL : https://hal.archives-ouvertes.fr/inria-00436428

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method. Basic Formulation and Linear Problems, 1989.

O. C. Zienkiewicz, S. Valliappan, and I. P. King, Elasto-plastic solutions of engineering problems ???initial stress???, finite element approach, International Journal for Numerical Methods in Engineering, vol.93, issue.1, pp.75-100, 1969.
DOI : 10.1002/nme.1620010107

P. Hénon, P. Ramet, and J. Roman, PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems, Parallel Computing, vol.28, issue.2, pp.301-321, 2002.
DOI : 10.1016/S0167-8191(01)00141-7

E. Foerster, G. Courrioux, H. Aochi, F. De-martin, and S. Bernardie, Seismic hazard assessment through numerical simulation at different scales : application to Nice city (French Riviera), Proceedings of the 14th World Conference on Earthquake Engineering, p.4, 2008.

R. Madariaga, Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am, vol.66, issue.3, pp.639-666, 1976.

J. Lysmer and L. A. Drake, A Finite Element Method for Seismology, Methods in Computational Physics, pp.181-216, 1972.
DOI : 10.1016/B978-0-12-460811-5.50009-X

E. Tessmer and D. Kosloff, 3-D elastic modeling with surface topography by a Chebychev spectral method, GEOPHYSICS, vol.59, issue.3, pp.464-473, 1994.
DOI : 10.1190/1.1443608

D. Komatitsch and J. P. Vilotte, The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seismol. Soc. Am, vol.88, issue.2, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

C. Riyanti, Y. Erlangga, R. Plessix, W. Mulder, C. Vuik et al., A new iterative solver for the time-harmonic wave equation, GEOPHYSICS, vol.71, issue.5, pp.57-63, 2006.
DOI : 10.1190/1.2231109

F. Sourbier, S. Operto, J. Virieux, P. R. Amestoy, and J. Excellent, FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data???Part 1, Computers & Geosciences, vol.35, issue.3, pp.487-495, 2009.
DOI : 10.1016/j.cageo.2008.04.013

URL : https://hal.archives-ouvertes.fr/insu-00354703

J. Tromp, D. Komatitsch, and Q. Liu, Spectral-element and adjoint methods in seismology, Communications in Computational Physics, vol.3, pp.1-32, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00721213

C. Tape, Q. Liu, A. Maggi, and J. Tromp, Adjoint Tomography of the Southern California Crust, Science, vol.325, issue.5943, pp.988-992, 2009.
DOI : 10.1126/science.1175298

URL : https://hal.archives-ouvertes.fr/hal-00723543

T. Furumura and L. Chen, Parallel simulation of strong ground motions during recent and historical damaging earthquakes in Tokyo, Japan, Parallel Computing, vol.31, issue.2, pp.149-165, 2005.
DOI : 10.1016/j.parco.2005.02.003

D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp, A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator, Proceedings of the 2003 ACM/IEEE conference on Supercomputing, SC '03, p.4
DOI : 10.1145/1048935.1050155

URL : https://hal.archives-ouvertes.fr/hal-00721219

D. Komatitsch, J. Labarta, and D. Michéa, A Simulation of Seismic Wave Propagation at High Resolution in the Inner Core of the Earth on 2166 Processors of MareNostrum, Lecture Notes in Computer Science, vol.5336, pp.364-377, 2008.
DOI : 10.1007/978-3-540-92859-1_33

V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez et al., High resolution forward and inverse earthquake modeling on terasacale computers, Proceedings of the 2003 ACM/IEEE conference on Supercomputing, p.52, 2003.

C. Burstedde, M. Burtsher, O. Ghattas, G. Stadler, T. Tu et al., ALPS: A Framework for Parallel Adaptive PDE Solution, Journal of Physics: Conference Series, vol.180, 2009.

P. B. Schnabel, J. Lysmer, and H. B. Seed, SHAKE: A computer program for earthquake response analysis of horizontally-layered sites, Rep, 1972.

E. Foerster and H. Modaressi, Nonlinear numerical method for earthquake site response analysis II ??? case studies, Bulletin of Earthquake Engineering, vol.117, issue.1, pp.325-345, 2007.
DOI : 10.1007/s10518-007-9034-5

I. M. Idriss and H. B. Seed, Seismic response of horizontal soil layers, Journal of the Soil and Mechanics Foundation Division ASCE, vol.94, pp.1003-1031, 1968.

J. Xu, J. Bielak, O. Ghattas, and J. Wanga, Three-dimensional nonlinear seismic ground motion modeling in basins, Physics of the Earth and Planetary Interiors, vol.137, issue.1-4, pp.81-95, 2003.
DOI : 10.1016/S0031-9201(03)00009-8

A. J. Abbo, Finite element algorithms for elastoplasticity and consolidation, 1997.

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Mathematics of Computation, vol.31, issue.139, pp.629-651, 1977.
DOI : 10.1090/S0025-5718-1977-0436612-4

H. Modaressi, Modélisation numérique de la propagation des ondes dans les milieux poreux anélastiques, 1987.

D. Komatitsch and R. Martin, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, GEOPHYSICS, vol.72, issue.5, pp.155-167, 2007.
DOI : 10.1190/1.2757586

URL : https://hal.archives-ouvertes.fr/inria-00528418

S. Kramer, Geotechnical Earthquake Engineering, 1996.

Z. Mroz, On the description of anisotropic workhardening, Journal of the Mechanics and Physics of Solids, vol.15, issue.3, pp.163-175, 1967.
DOI : 10.1016/0022-5096(67)90030-0

D. Aubry, J. C. Hujeux, F. Lassoudire, and Y. Meimon, A double memory model with multiple mechanisms for cyclic soil behaviour, Proceedings of the International Symposium, pp.3-13, 1982.

L. X. Luccioni, J. M. Pestana, and R. L. Taylor, Finite element implementation of non-linear elastoplastic constitutive laws using local and global explicit algorithms with automatic error control, International Journal for Numerical Methods in Engineering, vol.23, issue.5, pp.1191-1212, 2001.
DOI : 10.1002/1097-0207(20010220)50:5<1191::AID-NME73>3.0.CO;2-T

X. Lei and C. J. Lissenden, Pressure Sensitive Nonassociative Plasticity Model for DRA Composites, Journal of Engineering Materials and Technology, vol.129, issue.2, pp.255-264, 2007.
DOI : 10.1115/1.2400273

J. Lu, J. Peng, A. Elgamal, Z. Yang, and K. H. Law, Parallel finite element modeling of earthquake ground response and liquefaction, Earthquake Engineering and Engineering Vibration, vol.429, issue.12, pp.23-37, 2004.
DOI : 10.1007/BF02668848

T. George, A. Gupta, and V. Sarin, An empirical analysis of iterative solver performance for spd systems, 2009.

J. Gaidamour and P. Hénon, A Parallel Direct/Iterative Solver Based on a Schur Complement Approach, 2008 11th IEEE International Conference on Computational Science and Engineering, pp.98-105
DOI : 10.1109/CSE.2008.36

URL : https://hal.archives-ouvertes.fr/hal-00353595

A. Haidar, On the parallel scalability of hybrid linear solvers for large 3D problems, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00347948

A. Gupta, S. Koric, and T. George, Sparse matrix factorization on massively parallel computers, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC '09, 2009.
DOI : 10.1145/1654059.1654061

G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.359-392, 1998.
DOI : 10.1137/S1064827595287997

B. Patzák, D. , and Z. Bittnar, Parallel explicit finite element dynamics with nonlocal constitutive models, Computers & Structures, vol.79, issue.26-28, pp.2287-2297, 2001.
DOI : 10.1016/S0045-7949(01)00069-4

J. Lu, Parallel finite element modeling of earthquake site response and liquefaction, 2006.

M. A. Bhandarkar, L. V. Kalé, E. De-sturler, and J. Hoeflinger, Adaptive Load Balancing for MPI Programs, Computational Science - ICCS 2001, International Conference, pp.108-117, 2001.
DOI : 10.1007/3-540-45718-6_13

P. Hénon, P. Ramet, and J. Roman, On Using an Hybrid MPI-Thread Programming for the Implementation of a Parallel Sparse Direct Solver on a Network of SMP Nodes, Proceedings of the Sixth International Conference on Parallel Processing and Applied Mathematics, Workshop HPC Linear Algebra, pp.1050-1057, 2005.
DOI : 10.1007/11752578_127

I. Beresnev and K. Wen, Nonlinear soil response -a reality, Bull. Seism. Soc. Am, vol.86, issue.6, pp.1964-1978, 1996.

M. Bouchon, Effect of topography on surface motion, Bull. Seism. Soc. Am, vol.63, issue.3, pp.615-632, 1973.