A global sensitivity methodology to guide risk assessment for CO2 geological storage in deep saline aquifers

Jeremy Rohmer

To cite this version:

Jeremy Rohmer. A global sensitivity methodology to guide risk assessment for CO2 geological storage in deep saline aquifers. 2nd EAGE workshop on CO2 geological storage, Mar 2010, Berlin, Germany. hal-00531782

HAL Id: hal-00531782
https://hal-brgm.archives-ouvertes.fr/hal-00531782

Submitted on 3 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Global Sensitivity Methodology to Guide Risk Assessment for CO2 Geological Storage in Deep Saline Aquifers

Jeremy Rohmer

aBRGM, “Natural Hazards and Safety of CO2 Storage” Division, Orléans, FRANCE

European Directive 2009/31/EC on the geological storage of carbon dioxide states:

- Annex I, Step 3.2: Sensitivity characterisation
- Multiple simulations shall be undertaken to identify the sensitivity of the assessment to uncertainties associated with key parameters. The simulations shall be based on altering parameters in the static geological earth model(s), and changing rate functions and assumptions in the dynamic simulation model. The sensitivity assessment shall be taken into account in the risk assessment.

Methods

Numerical models for risk assessment:

- Multiple input parameters
- High non-linearities
- High computer time cost

Response surface method:

- g* = "real" computing-intensive model
- g = meta-model or surrogate "simpler" model to mimic g* ("regression model")

Recursion partitioning:

- Evaluation of g is faster

Step 1: Mapping and training data

- Between the input and output domain
- Limited number of samples
- Work fairly well with modest number of inputs

Step 2: Response surface construction

- Goal: keep only the most important parameters in the surrogate model
- Objective: build a 1d recursive partitioning model

Step 3: Importance measure

- Coefficient of determination $R^2 = \frac{\sum (y_i - \bar{y})^2}{\sum (y_i - \bar{y})^2}$
- Importance order

Adapted from Bouc et al., 2009

References

- **Classification and regression trees** (Chapman and Hall, New York), 1984.
- **Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on the pressure response in the injection zone** (J. Giot, D., Le Nindre, Y.M., Criaud, A., Fouillac, C., Brach, M., 1994).
- **Determining safety criteria for CO2 geological storage** (ISAG, 2008).
- **Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on the pressure response in the injection zone** (J. Giot, D., Le Nindre, Y.M., Criaud, A., Fouillac, C., Brach, M., 1994).

Acknowledgments

This work was funded under the BRGM’s Research project “Gestion des Risques” integrated in the Directorate of Research project CS/0902.

www.brgm.fr