Skip to Main content Skip to Navigation

Current kinematics in the Northern Andes by GPS

Abstract : The Northern Andes is a continental domain located at the northwestern edge of the South American Plate. This ~2200 km long and 300 to 1000 km wide region defines a natural laboratory for various studies of divers processes, including deformation partitioning, inter-seismic coupling, and continental collision. The oblique and fast convergence of the Nazca plate beneath South America induces (1) elastic deformation induced by spatially variable locking at the subduction interface along the Equatorian-Colombian margin and (2) long-term shear stress, which results in a translation-like motion of the North Andean Sliver (NAS) towards northeast with respect to the South American plate. Furthermore, Nazca plate convergence also produces a diversity of interplate and intraplate seismicity, which has been observed since the 19th century. In the northwestern Andes, eastward collision of the Panama block against the NAS and the Caribbean subduction induce deformation that dominates the kinematics at the northern part of the NAS. Spatial geodesy techniques, in particular GPS/GNSS measurements, make it possible to quantify movements on the earth's surface with millimeter accuracy. The integration of these measurements with elastic models allows us to provide information about the kinematics and the inter-seismic coupling distribution at the subduction interface. This thesis focuses on studying the inter-seismic phase of the seismic cycle with a particular interest in the continental deformation along and within the NAS. The aim is to improve the kinematic models for the Nazca plate and the North Andean Sliver. For that, GPS measurements collected by several research institutes and the Franco-Ecuadorian collaboration (ADN & S5 projects, SVAN International Joint Laboratory), between 1994.0 and 2019.9 are used to derive a new and more refined horizontal velocity field at the continental scale. The analysis and modeling of this velocity field is centered on two main axes allowing to build the first kinematic elastic block model for the NAS and neighboring regions. This model simultaneously solves for rigid block rotations and spatially variable coupling at the subduction interfaces, providing crustal fault slip rates consistent with the derived kinematics. First, we propose a new Euler pole that describes the current motion of the Nazca plate with respect to South America. This pole is estimated from continuous measurements at 5 GPS sites, spatially sampling the entire plate. Our results show that GPS data are compatible with the kinematics of a single rigid plate (wrms = 0.6 mm/yr). Our pole predicts a maximum convergence rate at 65.5 ± 0.8 mm/yr at latitude ~30°S along the Chile trench, decreasing to 50.8 ± 0.7 mm/yr in northern Colombia, and 64.5 ± 0.9 mm/yr in southern Chile. A second-order result for the Nazca plate is that the velocity east component of Robinson Crusoe Island (latitude ~33.6°S) is ~4-5 mm/yr faster than the overall motion of the plate, which is induced by the visco-elastic relaxation following the Maule Mw 8.8 2010 earthquake in Chili. Secondly, our kinematic model for the northern Andes confirms that the Nazca/SOAM and Caribbean/SOAM relative motions are not accommodated inland by a single fault system. We find internal deformation at 2-4 mm/yr accommodated on active secondary faults (the Oca-Ancon, Santa Martha-Bucaramanga, Romeral, and Latacunga-Quito-El Angel faults). These faults bound tectonic blocks and define the rotation of 6 blocks. The NAS eastern boundary is found to be a right-lateral transpressive system accommodating 5 to 17 mm/yr of motion. Our model also quantifies the motion accommodated by the Panama block with respect to the NAS on active structures that we propose as new boundaries for these two continental domains. Relative motions take place at 6 mm/yr along the Uramita fault and 15 mm/yr in the Eastern Panama Deformed Zone. We also note that ~1 cm/yr of the Panama motion is transferred […]
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Monday, May 9, 2022 - 1:01:30 AM
Last modification on : Wednesday, July 20, 2022 - 3:16:14 AM
Long-term archiving on: : Wednesday, August 10, 2022 - 6:26:02 PM


Version validated by the jury (STAR)


  • HAL Id : tel-03662020, version 1


Paúl Jarrín Tamayo. Current kinematics in the Northern Andes by GPS. Geophysics [physics.geo-ph]. Sorbonne Université, 2021. English. ⟨NNT : 2021SORUS334⟩. ⟨tel-03662020⟩



Record views


Files downloads