Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Convergence of a finite-volume scheme for a heat equation with a multiplicative Lipschitz noise

Abstract : We study here the approximation by a finite-volume scheme of a heat equation forced by a Lipschitz continuous multiplicative noise in the sense of Itô. More precisely, we consider a discretization which is semi-implicit in time and a two-point flux approximation scheme (TPFA) in space. Since the nonlinearity in the stochastic integral is not compatible with the weak convergence obtained by the a priori estimates, we adapt the method based on the theorem of Prokhorov and on Skorokhod's representation theorem in order to show stochastically strong convergence of the scheme towards the unique variational solution of our parabolic problem.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-03663571
Contributeur : Flore Nabet Connectez-vous pour contacter le contributeur
Soumis le : mardi 10 mai 2022 - 11:47:21
Dernière modification le : mercredi 11 mai 2022 - 03:48:00

Fichier

Bauzet_Nabet_Schmitz_Zimmerman...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03663571, version 1

Citation

Caroline Bauzet, Flore Nabet, Kerstin Schmitz, Aleksandra Zimmermann. Convergence of a finite-volume scheme for a heat equation with a multiplicative Lipschitz noise. 2022. ⟨hal-03663571⟩

Partager

Métriques

Consultations de la notice

20

Téléchargements de fichiers

1