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ABSTRACT:  

Nonlinear dynamic analysis of existing or planned structures often requires the use of 

accelerograms that match a target design spectrum. Here, our main concern is to generate a set 

of motions with a good level of fit to the Eurocode 8 (EC8) design spectra for France. 

Synthetic time series are generated by means of a non-stationary stochastic method. To 

calibrate the input parameters in the stochastic approach, we select a reference set of 

accelerograms for a Eurocode 8 type B site category from the PEER Ground-Motion 

Database, which are then adjusted to the target spectrum through wavelet addition. Then, we 

compute nonlinear seismic responses of a soil column, including pore pressure effects, and 

brittle and ductile structures to the stochastic time-series, the natural accelerograms and time-

series generated using stationary stochastic approaches. The results of these calculations 
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reveal considerable variability in response despite the similarities in terms of spectral 

acceleration.  

 

Keywords: Eurocode 8 (EC8), spectrum-compatible time-series, nonlinear site response, 

structural response, variability 

 

1. INTRODUCTION 

The selection of accelerograms for earthquake engineering (both geotechnical and structural 

branches) is becoming increasingly important with the growing use of nonlinear dynamic 

analysis, for which a set of input ground motions is a key component. Sets of accelerograms 

can be obtained/generated in various ways, including purely natural accelerograms (e.g. 

Bommer and Acevedo 2004) through to purely artificial (e.g. Gasparini and Vanmarcke 1979) 

via various types in between (e.g. Douglas and Aochi, 2008). Whatever the technique 

deployed, it is necessary that the input ground motions be compatible with the assumed 

earthquake scenario, usually described in terms of a magnitude-distance pair (and possibly 

other descriptors, e.g. focal mechanism, and number of standard deviations from the mean), 

level of ground-motion intensity and/or design response spectrum. This condition sometimes 

implies that input motions are adjusted: often simply by linear scaling, by adding harmonic 

components in the frequency domain (e.g., using WES RASCAL, Silva and Lee, 1987) or by 

wavelet adjustments to obtain spectrum-compatible accelerograms (e.g., using RSPMatch, 

Abrahamson, 1992; Hancock et al. 2006). It is vital that the set of motions allows the accurate 

prediction of the average response of the analyzed system but also an indication of the 

variability around this average due to possibly variations in ground motions (e.g. Douglas, 

2006).  

Various recent studies attempt to define criteria to select sets of accelerograms suitable 
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for dynamic analyses. Özer and Akkar (2012) propose a strategy to select and scale 

earthquake records that provides good estimates of the median response and variability of 

nonlinear structural systems without excessively changing the inherent features of the 

selecting recordings. Buratti et al. (2011) present criteria to select six time-series (two original 

records, each scaled to three target levels), which they use to obtain a reasonable estimate of 

the full distribution of drift response in a six-story reinforced-concrete (RC) frame building. 

In dynamic analyses, a crucial step is the selection of accelerograms with appropriate spectral 

shapes, a condition that cannot be achieved in case of excessive scaling (Watson-Lamprey 

and Abrahamson 2006). To ensure realistic spectral shapes (e.g. in agreement with a given 

magnitude-distance scenario), Rota et al. (2012) propose a method to find a suite of 

accelerograms compatible with the Italian design spectra at any location in Italy. They derive 

a seismic mesozonation of the Italian territory, based on the identification of groups of spectra 

with similar features. For each of these groups, a reference spectrum is defined and then used 

to select real spectrum-compatible records.  

However, natural records corresponding to the earthquake scenario and site condition 

of the target spectrum are not always available. In this case simulations are needed. Among 

the available simulations techniques, stochastic simulations are widely used because of their 

simplicity. As summarized by Douglas and Aochi (2008), there are various types of stochastic 

methods: stationary stochastic methods that are compatible with a target spectrum (e.g., 

SIMQKE, Gasparini and Vanmarcke, 1976), semi-empirical methods taking into account non-

stationarity that are compatible with a target spectrum (e.g., Rezaeian and Der Kiureghian, 

2010) and methods incorporating earthquake physics (e.g., Pousse et al. 2006).  

Some recent studies compare the impact of using different techniques on the results of 

the final engineering analysis. Schwab and Lestuzzi (2007) carried out nonlinear analyses on 

single-degree-of-freedom (SDOF) systems using time-series produced by the classic 
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stochastic stationary procedure of SIMQKE (Gasparini and Vanmarcke 1976) as well as semi-

empirical non-stationary stochastic simulations (Sabetta and Pugliese, 1996). They show that 

the classic stationary procedure leads to a significant underestimation of the ductility demand 

compared to natural accelerograms, whereas the non-stationary procedure performs much 

better. Iervolino et al. (2010a) examine the mean nonlinear response of SDOF systems in 

terms of demand spectra (peak and cyclic response) using various sets of accelerograms, both 

real and artificial. They found that artificial records tend to underestimate the peak demand 

and to overestimate cyclic response. They do not give any conclusions on the variability of 

the response of the SDOF system. Along this line, Atkinson and Goda (2010) investigate peak 

nonlinear response of SDOF systems subjected to physics-based extended stochastic 

simulations (EXSIM software, Motazedian and Atkinson 2005) and lightly modified and 

scaled real records. They suggest that the stochastic method may be able to capture the overall 

structure response. But again, they do not address response variability.   

Recently, Sextos et al. (2011) chose an existing building damaged by the 2003 

Lefkada earthquake as a case study. Taking advantage of the availability of the ground-

motion excitation and damage observation, they calibrated a finite-element model of the 

building using the observed response and conducted extensive parametric analyses for various 

EC8-compliant sets of real accelerograms. They show that the main conclusions on the effects 

of the accelerogram selection on SDOF non-linear systems remain valid for more realistic 

irregular buildings. They also claim that EC8 specifications are too restrictive when selecting 

appropriate sets of accelerograms for reliable dynamic analysis. 

Given the little guidance provided in the EC8 design code on how to select/generate 

code-compatible time-series a number of recent articles have proposed sets of accelerograms 

consistent with the standard EC8 spectra. Kayhan et al. (2011) develop a meta-heuristic 

harmony search algorithm to select and linearly-scale sets of seven natural accelerograms 
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from the PEER Ground-Motion Database whose average spectra match the EC8 spectrum for 

the five principal EC8 site classes. Iervolino et al. (2010b) present a software package 

(REXEL) that allows suites of natural accelerograms to be selected from online European 

strong-motion databases whose averages match the EC8 spectral shape. Various options to 

adjust the selection algorithm (e.g. magnitude-distance ranges) are provided to the user. As 

mentioned above, Rota et al. (2012) also propose a method and suites of accelerograms for 

use in EC8-based design and analysis for Italy. These three studies are based on selection and 

scaling of natural strong-motion records. In contrast, Giaralis and Spanos (2009) propose a 

wavelet-based technique to generate artificial spectrum-compatible accelerograms, which they 

then apply to produce suites of EC8-compatible records.  

The current article differs from these previous studies in three main ways. Firstly, 

previous studies are all based on the standard EC8 spectra, whereas the present study focuses 

on the Type 2 EC8 spectrum in application in France. This spectrum differs not only from the 

standard Type 1 shape, but also from the standard Type 2 spectrum at long periods [see Figure 

1 and Pousse et al. (2005)]. Secondly, these previous studies concentrated on providing 

accelerograms whose averages match code spectra rather than also explicitly seeking suites 

whose variability matches the true dispersion in earthquake ground motions. Thirdly, the 

additional step of using the proposed time-series as inputs to structural and/or geotechnical 

analyses was rarely made. This is an important step because it allows the variability in the 

response of engineering systems due to differences in the input ground motions (all of which 

are compatible with the code) to be assessed. 

 

2. TIME-SERIES 

As a common basis for this study we queried the PEER Ground-Motion Database 

(http://peer.berkeley.edu/peer_ground_motion_database/spectras/new) to find ten 

http://peer.berkeley.edu/peer_ground_motion_database/spectras/new
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accelerograms with 5.8≤Mw≤6.2, 0≤rrup≤20km (where rrup is the distance to the rupture) and 

400≤Vs30≤600m/s that best match the French version of the EC8 design spectrum for a class B 

site (see Table 1). This database provides free access to thousands of strong-motion records 

from shallow crustal earthquakes in active areas and also easy-to-use online tools for the 

selection of records that match criteria in terms of earthquake scenario, local site conditions 

and response spectra. To not underestimate the true variability in ground motions or to bias 

the results by site- or event-specific characteristics we did not select more than one record 

from a given earthquake or a given site. For each triaxial accelerogram, the single component 

that best matched the EC8 spectrum from the two horizontal components was selected and 

scaled to a target peak ground acceleration (PGA) of 0.22g (the design PGA for a class B site 

in the highest hazard areas of mainland France). This set of accelerograms is the first set of 

input motions and it is called here: Natural_Scaled. There is a large variability in the response 

spectra of these signals even though, on average, they match the target spectrum quite well. 

These ten accelerograms were then adjusted in the period range 0.1 – 1s using the 

software SeismoMatch (http://www.seismosoft.com/en/HomePage.aspx), which adds 

wavelets so that the response spectra more closely match the target without greatly changing 

the “look” of the accelerograms. After applying this spectral matching the response spectra 

show a much closer match to the target spectrum, although they still lack short-period energy, 

but the accelerograms retain much variability in the time-domain. This is the second set of 

input motions and it is called here: Natural_Matched. 

Until recently, many engineering studies used SIMQKE (Gasparini and Vanmarcke, 

1976) to create accelerograms whose response spectra match a target. Although this technique 

is no longer considered state-of-the-art, we generate ten accelerograms to match the target 

EC8 spectrum using SIMQKE as a test of the validity of such an approach. So that the 

durations of the SIMQKE accelerograms are physically realistic we adopted the exponential 

http://www.seismosoft.com/en/HomePage.aspx
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envelope function with a and b parameters that led to a relative significant duration (5-95% of 

Arias intensity) close to the median duration predicted by the ground-motion prediction 

equation of Abrahamson & Silva (1996) for Mw=6 at rrup=10km and Vs30=500m/s (7.7s). 

These accelerograms have spectra that exactly match the target and there are all very similar 

in the time-domain. This is the third set of input motions and it is called here: SIMQKE. 

In the original SIMQKE procedure, a white-noise time series is filtered with an exponential 

envelope in the time domain. The phase of the output time histories is chosen randomly. In 

this study, we use a modified version by using natural phase accelerograms to obtain more 

realistic time-series (Perrault et al. 2013). Another advantage of this approach is that it is 

suitable for generating three component accelerograms, which could be required for non-

linear dynamic analyses. Moreover the strong-motion duration of the natural accelerograms is 

conserved by the definition of the envelope. Two sets of natural accelerograms are chosen to 

provide the phases and envelopes: 

- Natural accelerograms were selected from the French Accelerometric Network database 

(RAP, Péquegnat et al., 2008). We selected ten records corresponding to earthquakes with 

local magnitudes ML > 4, focal depths less than 10 km, and that were recorded at epicentral 

distances shorter than 40 km, so that they present an acceptable signal-to-noise ratio. These 

ten accelerograms were then adjusted using the modified SIMQKE procedure. This is the 

fourth set of input motions and it is called here: RAP_mSIMQKE. 

- The same process was performed but using the Natural_Scaled dataset instead, which 

presents a larger variability and matches the target spectrum better than does the RAP 

records. This is the fifth set of input motions and it is called here: Natural_mSIMQKE. 

The semi-empirical non-stationary stochastic method previously developed by Pousse et al. 

(2006) and then improved by Laurendeau (2013) has the advantage of being both simple (it 

does not require detailed knowledge on the rupture, travel path or site conditions) and 
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accounting for basic concepts of seismology (Brune's source, a realistic envelope function, 

non-stationarity and variability). Time-domain simulations are derived from the signal 

spectrogram and depend on three strong-motion indicators (intensity measures): the relative 

significant duration (DSR), the Arias intensity (AI) and the central frequency of the signal 

(FC(t)). For this study, the indicator distributions are deduced from the Natural_Scaled 

dataset. Many time histories are initially simulated (5 000) and scaled to the target PGA. Ten 

accelerograms are then randomly selected, and the distributions (μ and σ) of the key 

indicators (AI and DSR) and the mean of the ten acceleration response spectra (SA) are 

computed. The procedure is repeated until: (1) the indicator distributions of the synthetics 

match those obtained from the Natural_Scaled dataset; and (2) the mean of the ten 

acceleration response spectra matches the target spectrum between 0.05 s and 2 s. To assess 

the goodness of fit, the formulation of Anderson (2004) was used for the five criteria and their 

sum was minimized. This leads to the sixth set of input motions and it is called here: STOCH. 

These ten accelerograms were then adjusted using the software SeismoMatch, in the period 

range 0.1 – 1s, which led to the seventh set of accelerograms: STOCH_Matched. For these 

two datasets, the match with the target spectrum is comparable to those of Natural_Scaled 

and Natural_Matched, with a lack of energy at short periods.  

Table 2 presents the mean and variability of the three intensity measures considered 

when simulating the non-stationary stochastic accelerograms for the seven sets of time-series. 

We can observe that the RAP_mSIMQKE time-series have longer duration (DSR) than the 

other ones, likely because the duration is fixed using records from distances up to 40 km. 

Figure 2 presents the accelerograms and spectra of these sets and as a measure of the 

variability in the spectra within each set, the coefficients of variation for spectral acceleration. 

From Table 2 and Figure 2 it can be seen that the Natural_Scaled set shows the greatest 

variability and the SIMQKE records the least. As expected, the calibrated stochastic 
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simulations (STOCH and STOCH_Matched) show variability close to that of the natural 

accelerograms (Natural_Scaled and Natural_Matched). It will be shown subsequently that 

this variability in input records carries over to variability in building and site response.  

 

3. ANALYSIS OF BUILDING RESPONSE 

In this section some analyses of building response using the seven sets of acceleration time-

series are presented. We first conduct relatively simple structural modelling because of the 

number of runs that are required; but as shown below, the general trends carry over to more 

sophisticated dynamic analyses. 

3.1. Analysis of Single Degree of Freedom (SDOF) systems 

It is well known that structures do not remain elastic under strong shaking. To compare the 

effect of the seven sets of accelerograms presented above, we compute the nonlinear response 

of SDOF systems. The building behaviour is described following a model developed to 

simulate hysteretic energy capacity. In this paper, we used the Takeda model, first proposed 

by Takeda et al. (1970) and since analysed in depth by Schwab and Lestuzzi (2007) and 

Lestuzzi et al. (2007). The Takeda model includes realistic conditions for the reloading curves 

that model the characteristics of RC better than the standard elasto-plastic model. The Takeda 

model also accounts for the degradation of the stiffness with increasing excitation, which is 

related to the opening and closing process of existing cracks in the concrete, i.e. a reduction in 

the natural frequency of the building is accounted for. This behaviour is often observed in real 

structures under intense loading.   

Five parameters are used to describe the Takeda model: the initial stiffness related to 

the natural frequency of the SDOF, the post-yield stiffness corresponding here to 5%, the 

coefficient α related to the stiffness degradation and the target β of the reloading curve. In this 

study, standard values are used to develop the Takeda model: α = 0.1 and β = 0.1.  The 
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strength reduction factor R is 2, corresponding to a structure having limited hysteretic energy 

dissipation capacity, and which is currently recommended by design codes. The last 

parameter is the yield displacement (Uy). Up to the yield point, the building capacity curve is 

assumed to be linear. Uy depends on the frequency of the structure (which generally correlates 

with its height) and different values are, therefore, considered. 

For each set of accelerograms, three initial frequencies (periods) are considered: 1Hz 

(1s), 2Hz (0.5s) and 5Hz (0.2s) roughly corresponding to frequencies of low- and medium-

rise RC buildings. For these frequencies, three Uy are chosen, according to the values 

provided in HAZUS (FEMA, 1999). We kept the values given for the C2 building class (i.e. 

concrete shear walls) and corresponding to the Low Code seismic standard: Uy = 0.30 cm for 

f = 5Hz, Uy = 0.66 cm for f = 2Hz and Uy = 1.88 cm for f = 1Hz. A damping ratio of 5% is 

used, which is a standard assumption for RC structures. 

3.2. Results 

Figure 3 shows the force-displacement of the Takeda-model for the Friuli record (#2, Table 1) 

and the 2Hz SDOF. We observe the hysteretic loops of the nonlinear behaviour of the system. 

The drift of the SDOF is also shown in Figure 3 (upper row), this parameter being chosen to 

compare the effect of the variability of the seismic ground motion in building response. 

Considering the seven sets of accelerograms analysed in this paper, the three SDOF 

systems are tested and the drifts are compared (Figure 4 and Table 3). The building response 

shows large differences in terms of median and variability. The lowest variability is obtained 

for simulations using the SIMQKE method (sets 3, 4 and 5).The variability is the highest for 

the natural accelerograms (Natural_Scaled) and is well reproduced by the non-stationary 

stochastic simulations (STOCH). These two sets of accelerograms also result in similar 

median values. Finally, the median and the variability in the response at 2 Hz and 5 Hz using 

the natural matched (Natural_Matched) are similar to those obtained using the stochastic 
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matched (STOCH_Matched) (note, however, that for the 1 Hz SDOF system, the median and 

the variability using the Natural_Matched is larger). This is because the matching is 

performed in the frequency range 0.1 – 1 s, and one of the accelerograms is associated with 

high spectral accelerations above 1 s and hence high drifts at 1 Hz). This indicates that the 

natural variability of the ground-motion should be accounted for when selecting 

accelerograms and both methods integrating the natural or stochastic variability of ground 

motions are the most adapted. In addition, the overall variability of the drift increases for 

long-period buildings (1Hz). Depending on the features of the buildings, if this variability is 

neglected, the computed building response may underestimate the building response and the 

post-earthquake integrity of the building.  

3.3. Analysis of a masonry building 

To check the transferability of the results obtained for the simple SDOF system to masonry 

buildings, in this section we analyse the response of a sophisticated model of a masonry 

building developed by Gehl et al. (2013) to the same seven sets of accelerograms. Details of 

the analysed model and its calibration using an experimental pushover curve are provided in 

Gehl et al. (2013). Briefly, the model is of a simple two-storey brick building of size: 6m 

(length) × 4.4m (width) × 6.4m (height), with a computed natural period of 0.149s and higher 

modes (torsion and opposite-floor displacements) with periods around 0.05s. The model is 

subjected to the seven sets of accelerograms along its length using the TREMURI software, 

which discretizes the masonry into several components (piers, spandrels and rigid zones) 

through an equivalent-frame approach and macroelements.  

 Like for the analysis conducted on the simple ductile systems, the computed drifts for 

the masonry building and the seven sets of accelerograms show variable mean drifts and great 

differences between the observed variability around this mean (Figure 4). As with the ductile 

systems, the natural scaled accelerograms lead to the greatest variability and the 
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accelerograms generated using SIMQKE the least. The mean and the variability in the 

response using the Natural_Matched records is again similar to that observed using the 

stochastic records matched to the target spectrum (STOCH_Matched). This confirms the 

observation made above that the non-stationary stochastic approach of generating 

accelerograms proposed here is useful in capturing the true ground-motion variability and 

consequently the variability of building response. 

 

4. ANALYSIS OF SOIL RESPONSE 

Because nonlinear dynamic analyses are not only commonly conducted for building response 

but also for geotechnical studies, in this section the response of soil layers are analyzed using 

the same seven sets of accelerograms.  

4.1. Method 

The multi-shear mechanism model (Towhata and Ishihara, 1985) is a plane-strain formulation 

to simulate pore pressure generation in sands under cyclic loading and undrained conditions. 

Iai et al. (1990a, b) modified the model to account for the cyclic mobility and dilatancy of 

sands. The multiple-mechanism model relates the stress σ and strain ε through the 

following incremental equation (Iai et al., 1990a, b): 

 

 {dσ'} = [D] ({dε} - {dεp}) (1)  

 

where the curly brackets represent vector notation; {εp} is the volumetric strain produced by 

the pore pressure, and [D] is the tangential stiffness matrix. This matrix is composed by the 

volumetric and shear mechanisms, which are represented by the bulk and tangential shear 

moduli, respectively. Each spring follows the hyperbolic stress-strain model (Konder and 
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Zelasko, 1963) and the generalized Masing rules for the hysteresis process (O’Connell et al., 

2012). For more details on the model the reader is referred to Iai et al. (1990a, b). 

Iai et al. (1995) thoroughly studied the soil response at Kushiro Port during the 

Kushiro-Oki M7.8 1993 earthquake. The soil column is composed of dense sands where the 

first 30 m are suspected of having strong dilatancy effects. In this paper, we use the same 

velocity model assumed to be overlaying EC8 site class B material with a shear wave velocity 

of 500 m/s so that it is consistent with the accelerograms chosen above. Furthermore, we keep 

Iai et al. (1995) dilatancy parameters to simulate pore pressure changes in the soil column in 

the first 30 m depth. As an input motion we use the 70 acceleration time-series presented in 

Section 2. The boundary condition at the bottom of the soil column is assumed to be an elastic 

boundary condition (outcrop ground motion). The incident wavefield is divided by two before 

computing wave propagation in order to remove the free-surface effect. 

4.2. Results 

The results of all computations are presented in terms of maximum shear deformation as a 

function of depth and response spectra of the resulting ground motion at the surface. Figure 5 

(left) shows the geometric mean distribution of shear strain versus depth for each input set. 

Figure 5 (right) shows the coefficient of variation (CV) for each dataset. These results indicate 

that, like building response, soil response is sensitive to the chosen acceleration time-series in 

spite of having the same response spectrum. The mean shear strain from 0 to 10 m depth is 

highest using the RAP_mSIMQKE set, likely because of their long durations. The large values 

of CV for natural time-series indicate that natural variability should be taken into account 

when selecting spectrum-compatible accelerograms. In addition, this dispersion increases in 

layers where pore pressure effects take place. If this variability is neglected, the computed soil 

response may underestimate quite considerably the soil deformation. 

Figure 6 shows the geometric mean response spectra (left) and the corresponding CV 
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(right) for the time histories obtained at the surface for each dataset. These results are 

informative and show the complexity of ground-motion prediction when nonlinear soil 

behaviour takes place. Indeed, there is a partial correlation between the values of CV and the 

resulting ground motion at the surface. For example, the natural data (black curve), which 

show the largest variability (CV) do not lead to the highest response spectrum. This can be 

explained by looking at Figure 5 where the shear strain is largely mobilized by this dataset, 

thus strong nonlinearity occurs thereby reducing the computed ground motion at the surface. 

Conversely, the dataset having the smallest CV (SIMQKE, yellow curve) has almost the 

largest response at the surface together with dataset from Natural_mSIMQKE in light blue. A 

special case is the one obtained using the non-stationary stochastic accelerograms because 

these records produce the strains closer to the natural signals and the CV in terms of response 

spectra is also close to that dataset (red curve). 

Finally, in spite of all these differences in terms of source generation and wave 

propagation, the resulting mean response spectra are relatively close. Nevertheless, these 

results suggest that care should be taken in selecting compatible time histories for soil 

response that includes nonlinear effects. It may not be sufficient to make only a few 

computations. It is probably a good idea to use several input ground motions to quantify the 

dispersion of the resulting ground motion at the surface. 

 

5. CONCLUSIONS 

This study shows that the selection of accelerograms is a fundamental component in 

earthquake engineering. Using various techniques we have generated seven sets of 

accelerograms following Eurocode 8 (EC8) guidance (i.e. with the constraint that their 

response spectra match the EC8 design spectrum) for a B site class, and analyzed their impact 

on nonlinear structures and soil columns. In both cases the mean, and especially the 
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variability of the nonlinear response depend greatly on the set of input accelerograms. It is 

thus crucial to select sets of accelerograms that represent the natural ground-motion 

variability. The small variability in the input set of accelerograms generated with the SIMQKE 

procedure and in the resulting structure response shows that a smaller number of 

accelerograms may be enough to determine the average structure behaviour but not 

necessarily the variability around this average. 

Since the number of real accelerograms is sometimes limited for a given scenario, an 

alternative approach is to use non-stationary semi-empirical stochastic simulations 

(Laurendeau, 2013). This technique allows the rapid generation of many sets of realistic 

accelerograms with chosen variability of ground-motion parameters. Our results show that if 

the variability of the ground-motion indicators (Arias intensity and relative significant 

duration) are properly chosen (i.e. calibrated with real data), the stochastic method provides 

nonlinear responses of structures and soil columns (in terms of median value and variability) 

similar to those for natural accelerograms. For instance, the results presented in this paper 

could be expanded to site classes A and D using stochastic simulations with ground-motion 

indicators calibrated using the PEER database, which includes a large number of records for 

class B sites but fewer records for these site classes (site class C is well covered by natural 

accelerograms in the PEER database). Note, however, that such stochastic simulations are not 

suitable for generating three component accelerograms, which can be required for non-linear 

dynamic analyses. The approach that includes realistic phases in the original SIMQKE 

procedure (sets RAP_mSIMQKE and Natural_mSIMQKE) could represent an alternative 

method for this situation. 

 

AKCNOWLEDGEMENTS 



 16 

This work was partially sponsored by the Ministry of Sustainable Development through the 

French Accelerometric Network working group “Seismic ground motion for engineering”. An 

earlier version was presented at the 15
th

 World Conference on Earthquake Engineering 

(Lisbon, Portugal) in September 2012 (Laurendeau et al., 2012). We thank Pierre Gehl and 

Jaime Abad for computing the responses of the masonry structure and Pierino Lestuzzi for 

providing the Takeda code. We also thank Julien Rey for fruitful discussions. Finally, we 

thank two anonymous reviewers and Roberto Paolucci for their constructive comments on an 

earlier version of this article. 

 

REFERENCES  

 

Abrahamson, N. (1992). Non-stationary spectral matching, Seismological Research Letters, 

63(1), 30. 

Abrahamson, N. A. and W. J. Silva (1996). Empirical ground motion models, Report to 

Brookhaven National Laboratory.  

Anderson, J. (2004). Quantitative measure of the goodness-of-fit of synthetic seismograms, 

Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, 

Canada. Paper 243. 

Atkinson, G. and K. Goda (2010). Inelastic seismic demand of real versus simulated ground-

motion records for Cascadia subduction earthquakes, Bulletin of the Seismological Society 

of America, 100(1), 102-115. 

Bommer, J.J and A.B. Acevedo (2004). The use of real accelerograms as input to dynamic 

analyses, Journal of Earthquake Engineering, 8, 43-91. 

Boore, D. (2003). Simulation of ground motion using the stochastic method. Pure and  

Applied Geophysics, 160(3):635–676. 

Buratti, N., P. Stafford and J.J. Bommer (2011). Earthquake accelerogram selection and 



 17 

scaling procedures for estimating the distribution of drift response, Journal of Structural 

Engineering (ASCE), 137, 345-357. 

Douglas, J. (2006). Strong-motion records selection for structural testing. Proceedings of First 

European Conference on Earthquake Engineering and Seismology (a joint event of the 

13th ECEE & 30th General Assembly of the ESC). Paper number 5. 

Douglas, J. and H. Aochi (2008). A survey of techniques for predicting earthquake ground 

motions for engineering purposes, Surveys in Geophysics, 29(3), 187-220. DOI 

10.1007/s10712-008-9046-y. 

Federal Emergency Management Agency (FEMA) (1999). HAZUS Earthquake loss 

estimation methodology. Federal Emergency Management Agency, Washington, D.C. 

Gasparini, D. A. and E. H. Vanmarcke (1976). SIMQKE: A Program for Artificial Motion 

Generation, Department of Civil Engineering, Massachusetts Institute of Technology, 

Cambridge, MA. 

Gehl, P., D. M. Seyedi and J. Douglas (2013). Vector-valued fragility functions for seismic 

risk evaluation, Bulletin of Earthquake Engineering, 11(2), 365-384, DOI 

10.1007/s10518-012-9402-7. 

Giaralis, A. and P. D. Spanos (2009). Wavelet-based response spectrum compatible synthesis 

of accelerograms – Eurocode application (EC8), Soil Dynamics and Earthquake 

Engineering, 29(1), 219-235. 

Hancock, J., J. Watson-Lamprey, N. Abrahamson, J. Bommer, A. Markatis, E. McCoy and R. 

Mendis (2006). An improved method of matching response spectra of recorded 

earthquake ground motion using wavelets. Journal of Earthquake Engineering, 

10(spec01):67–89. 

Iai, S., Y. Matsunaga, and T. Kameoka (1990a). Strain space plasticity model for cyclic 

mobility, Report of the Port and Harbour Research Institute, 29, 27-56. 



 18 

Iai, S., Y. Matsunaga, and T. Kameoka (1990b). Parameter identification for cyclic mobility 

model, Report of the Port and Harbour Research Institute, 29, 57-83. 

Iai, S., T. Morita, T. Kameoka, Y. Matsunaga, and K. Abiko (1995). Response of a dense 

sand deposit during 1993 Kushiro-Oki Earthquake, Soils and Foundations, 35, 115-131.  

Iervolino, I., F. De Luca and E. Cosenza (2010a). Spectral shape-based assessment of SDOF 

nonlinear response to real, adjusted and artificial accelerograms, Engineering Structures, 

32, 2776-2792. 

Iervolino, I., C. Galasso and E. Cosenza (2010b). REXEL: computer aided record selection 

for code-based seismic structural analysis. Bulletin of Earthquake Engineering, 8, 339-

362. 

Kayhan, A.H., K. A. Korkmaz and A. Irfanoglu (2011).  Selecting and scaling real ground 

motion records using harmony search algorithm, Soil Dynamics and Structural 

Engineering, 31(7), 941-953. 

Katsanos, E. I., A. G. Sextos and G. D. Manolis (2010). Selection of earthquake ground 

motion records: A state-of –the-art review from a structural engineering perspective, Soil 

Dynamics and Structural Engineering, 30, 157-169.   

Konder, R.L. and J. S. Zelasko (1963). A hyperbolic stress-strain formulation for sands, in 

Proceedings of Second Pan American Conference on Soil Mechanics and Foundation 

Engineering, Brazil, 289-324. 

Laurendeau, A. (2013). Définitions des mouvements sismiques au rocher. PhD thesis, 

Université de Grenoble. 

Laurendeau, A., M. Causse, P. Guéguen, M. Perrault, L. F. Bonilla and J. Douglas, A set of 

Eurocode 8-compatible synthetic time-series as input to dynamic analysis, Proceedings of 

the Fifteenth World Conference on Earthquake Engineering. Lisbon, Portugal. 

Lestuzzi, P., Y. Belmouden and M. Trueb (2007). Non-linear seismic behavior of structures 



 19 

with limited hysteretic energey dissipation capacity, Bulletin of Earthquake Engineering, 

5(1), 549-569. 

Motazedian, D. and G. M. Atkinson (2005). Stochastic finite-fault modeling based on a 

dynamic corner frequency, Bulletin of the Seismological Society of America, 95, 995–

1010 

O’Connell, D., J. P. Ake, L. F. Bonilla, P. Liu, R. LaForge, and D. Ostenaa (2012). Strong 

ground motion estimation, in Earthquake Research and Analysis – New Frontiers in 

Seismology, ISBN 978-953-307-840-3. 

Özer, B. and S. Akkar (2012). A procedure on ground motion selection and scaling for 

nonlinear response of simple structural systems, Earthquake Engineering and Structural 

Dynamics, 41(12), 1693-1707. DOI: 10.1002/eqe.1198. 

Pequegnat C., Gueguen P., Hatzfeld D., Langlais M. 2008. The French Accelerometric 

Network (RAP) and National Data Centre (RAP-NDC). Seismological Research Letters, 

79(1), 79-89. 

Perrault, M., P. Guéguen, A. Aldea and S. Demetriu (2013). Reducing the uncertainties of the 

fragility curves using experimental testing in existing buildings: the case of the BRD 

Tower of Bucharest (Romania), Earthquake Engineering and Engineering Vibration, in 

press. 

Pousse, G., C. Berge-Thierry, F. Bonilla and P.Y. Bard (2005). Eurocode 8 design response 

spectra evaluation using the K-Net Japaneese database, Journal of Earthquake 

Engineering, 9, 547-574.  

Pousse, G., L. F. Bonilla, F. Cotton, L. Margerin (2006). Nonstationary stochastic simulation 

of strong ground motion time histories including natural variability: Application to the K-

net Japanese database. Bulletin of the Seismological Society of America, 96, 2103–2117. 

Rezaeian, S. and A. Der Kiureghian (2010). Simulation of synthetic ground motions for 



 20 

specified earthquake and site characteristics. Earthquake Engineering & Structural 

Dynamics, 39, 1155–1180. 

Rota, M., E. Zuccolo, I. Taverna, M. Corigliano, C. G. Lai and A. Penna (2012). 

Mesozonation of the Italian territory for the definition of real spectrum-compatible 

accelerograms, Bulletin of Earthquake Engineering, 10(5), 1357-1375. DOI 

10.1007/s10518-012-9369-4. 

Sabetta, F. and A. Pugliese (1996). Estimation of response spectra and simulation of 

nonstationary earthquake ground motions, Bulletin of the Seismological Society of 

America, 86, 337-352.  

Schwab, P. and P. Lestuzzi (2007). Assessment of the seismic non-linear behavior of ductile 

wall structures due to synthetics earthquakes, Bulletin of Earthquake Engineeering, 5, 67-

84. 

Sextos, A. G., E. I. Katsanos and G. D. Manolis (2011). EC8-based earthquake record 

selection procedure evaluation: Validation study on observed damage of an irregular R/C 

building, Soil Dynamics and Structural Engineering, 31, 583-597. 

Silva, W. and Lee, K. (1987). WES RASCAL code for synthesizing earthquake ground 

motions: State-of-the-Art for Assessing Earthquake Hazards in the United States, Report 

24. US Army Engineers Waterways Experiment Station, Misc. Paper S-73-1. 

Takeda, T., M. A. Sozen and N. M. Nielsen (1970). Reinforced concrete response to 

simulated earthquakes, Journal of the Structural Division, 96(ST12), 2557-2573. 

Proceedings of the American Societey of Civil Engineers (ASCE). 

Towhata, I. and K. Ishihara (1985). Modeling soil behavior under principal axes rotation, 

paper presented at the Fifth International Conference on Numerical Methods in 

Geomechanics, Nagoya, Japan, 523-530.  

Watson-Lamprey, J. and N. Abrahamson (2006). Selection of ground-motion time series and 



 21 

limits on scaling, Soil Dynamics and Structural Engineering, 26, 477-482. 

 

 

 

 

 

 

 

 

Tables  

 

 

 
Table 1. Natural_Scaled dataset.  

 

 Event Mw Station 

Component 

(°) 
rrup  

(km) 
Vs30 

(m/s) 

Unscaled

PGA 

(g) 

1 Parkfield 6.19 Temblor pre-1969 295 16.0 528 0.27 

2 Friuli, Italy-02 5.91 Forgaria Cornino 270 14.8 412 0.21 

3 Irpinia, Italy-02 6.20 Calitri 270 8.8 600 0.17 

4 Morgan Hill 6.19 
Anderson Dam 

(Downstream) 

250 
3.3 488 

0.42 

5 San Salvador 5.80 Geotech Investig Center 90 6.3 545 0.87 

6 
Whittier Narrows-

01 
5.99 Garvey Res, - Control Bldg 

330 
14.5 468 

0.46 

7 Northridge-04 5.93 Moorpark - Fire Sta 180 14.7 405 0.18 

8 Chi-Chi, Taiwan-02 5.90 TCU073 0 10.7 508 0.09 

9 Chi-Chi, Taiwan-03 6.20 TCU078 0 7.6 443 0.28 

10 Chi-Chi, Taiwan-04 6.20 CHY074 90 6.2 553 0.32 

Mean Mw 6.05 Mean rrup, Vs30 and unscaled PGA 10.3 495 0.33 

Mw is moment magnitude, rrup is distance to the rupture and Vs30 is the average shear-wave velocity in 

the top 30m. The horizontal component used is expressed in term of azimuth. Note that in the event 

column, 01 corresponds to the mainshock and 02,03,... to aftershocks.     
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Table 2: Mean and variability of three key intensity measures for the seven sets of records.  

 

 
 Ln(PGA) Ln(AI) Ln(DSR) 

 
 

Exp(μ) 

(m/s
2
)
 

Exp(σ) 

(m/s
2
) 

Exp(μ) 

(m/s) 

Exp(σ) 

(m/s) 

Exp(μ)  

(s) 

Exp(σ) 

(s) 

1 Natural_Scaled 2.16 1.00 0.33 1.80 7.24 1.74 

2 Natural_Matched 2.23 1.16 0.29 1.51 7.66 1.63 

3 SIMQKE 2.20 1.00 0.69 1.20 7.65 1.02 

4 RAP_mSIMQKE 2.36 1.06 0.90 1.22 16.41 1.29 

5 Natural_mSIMQ

KE 
2.53 

1.14 0.51 
1.28 8.74 1.38 

6 STOCH 2.16 1.00 0.35 1.82 7.23 1.71 

7 STOCH_Matched 2.12 1.13 0.34 1.61 7.45 1.82 

PGA is peak ground acceleration, AI is Arias intensity and DSR is relative significant duration equal to 

the time interval between 5% and 95% of the cumulative AI over time. 
 
 
 
 
 
 
 
Table 3: Comparison of the mean and variability of the drift computed for SDOF systems 

(RC buildings) at 1 Hz, 2 Hz and 5 Hz, and the masonry building, for the seven sets of 

accelerograms. 

  SDOF system 

– 

1 Hz 

SDOF system 

– 

2 Hz 

SDOF system 

– 

5 Hz 

Masonry 

building 

  median std median std median std median std 

1 Natural_Scaled 0.140 0.120 0.157 0.118 0.090 0.032 0.368 0.140 

2 Natural_Matched 0.099 0.015 0.111 0.034 0.095 0.021 0.341 0.077 

3 SIMQKE 0.099 0.020 0.102 0.015 0.089 0.006 0.316 0.035 

4 RAP_mSIMQKE 0.118 0.013 0.112 0.017 0.082 0.007 0.417 0.067 

5 Natural_mSIMQKE 0.103 0.016 0.100 0.019 0.084 0.009 0.293 0.032 

6 STOCH 0.175 0.104 0.181 0.070 0.091 0.028 0.412 0.162 

7 STOCH_Matched 0.161 0.094 0.115 0.018 0.094 0.012 0.355 0.077 
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Figure captions 

 
 

Figure 1. Comparison between the standard EC8 spectra and the spectra applied in France 

(Type 1 and 2), for a type B site. For periods below 1s the French Type 2 spectrum is the 

same as the standard EC8 spectrum and hence it is plotted beneath this curve. 

 

 

Figure 2. Left: The seven sets of accelerograms generated for the nonlinear dynamic 

analyses. The PGA values are all equal to ~2.2 m/s
2
. Middle: Corresponding response spectra 

(gray), geometric mean of response spectra (black) and EC8 design spectrum for type B soil 

(red). Right: Coefficient of variation of spectral acceleration. 
 

 

Figure 3. Example of drift (left, upper figure) and force-displacement curve (right), for the 

2Hz SDOF building using the Friuli record (#2, Table 1; left, lower figure). 

  

 

Figure 4. Comparison of the drifts computed for SDOF systems at 1Hz (grey circles), 2Hz 

(black circles), 5Hz (open circles) and masonry (grey squares) buildings, for the seven sets of 

accelerograms. For the sets Natural_Scaled and STOCH, median and standard deviation 

(represented by red dashes) are computed by removing the drift values larger than 0.8. 

 

 

Figure 5. Distribution of maximum shear deformation versus depth (left). Each line 

corresponds to the geometric mean strain of each dataset (Table 2). Coefficient of variation 

versus depth for each computed dataset (right). 

 

 

Figure 6. Mean response spectra of computed ground motion at the surface (left) and the 

corresponding coefficient of variation (right). 
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Figure 2 
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Figure 3 
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Figure 6 

 

 

 

 

 

 


